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INTRODUCTION
by Brian Greene

I
N THE course of a single decade, Albert Einstein discovered

special and then general relativity, and in so doing over-

turned the conceptions of space and time that our species had

held for thousands of years. Even so, many of us, at least intu-

itively, still adhere to those disproved conceptions. We imagine

space as an inert stage on which the events of the cosmos take

place. We imagine time being recorded on a universal clock,

ticking away in a identical manner here, and on Mars, and in

the Andromeda galaxy, and everywhere else, regardless of dif-

fering environments and physical contexts. For most of us, the

unchanging eternality of space and time is among the most

basic features of existence. But to hold such beliefs is to hold to

a pre-Einsteinian vision that is not only theoretically untenable

but, as attested to by numerous experiments, demonstrably

wrong.

As a professional physicist, it is easy to become inured to rela-

tivity. Whereas the equations of relativity were once startling

statements fashioned within the language of mathematics,

physicists have now written relativity into the very mathematical

grammar of fundamental physics. Within this framework, prop-

erly formulated mathematical equations automatically take full

account of relativity, and so by mastering a few mathematical

rules one becomes technically fluent in Einstein’s discoveries.

Nevertheless, even though relativity has been systematized

mathematically, the vast majority of physicists would say that

they still don’t “feel relativity in their bones.” I, for one, know
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how easy it is to slip into familiar Newtonian thinking in which

space and time are incorrectly envisioned as separate, inde-

pendent, and unchanging. But I can also attest to the undimin-

ished feeling of awe I experience each time I pay sufficient at-

tention to details hidden within mathematics streamlined for

relativistic economy, and come face to face with the true mean-

ing of relativity. Space and time form the very arena of reality.

The seismic shift in this arena caused by relativity is nothing

short of an upheaval in our basic conception of reality.

So, what does relativity say?

In 1905, Einstein published what we now call the special the-

ory of relativity in the German Annalen der Physik, with the

unassuming title “On the Electrodynamics of Moving Bodies.”

The paper grew out of an intellectual struggle he’d been en-

gaged with since the age of sixteen regarding the mathematical

description of light’s motion, which was discovered by James

Clerk Maxwell in the 1860s. Briefly put, unlike what one would

expect based on Newton’s equations (and based on common
sense), Maxwell’s equations (when properly interpreted)

showed that whether you run toward or away from an oncom-

ing beam of light, its speed of approach would appear exacdy

as it would were you standing still—not one iota faster or

slower. This apparent constancy of light’s speed engaged the

sharpest scientific minds of the late nineteenth and early twen-

tieth centuries because, even though it emerged from the

equations, and even though it was borne out by ever more pre-

cise experimental measurements, it just seemed to make no

sense. How could the speed of light not appear faster ifyou run

toward an approaching light beam? How could the speed of

light not appear slower if you run away from it? Here’s where

Einstein changed everything. Speed is a measure of distance

traveled divided by duration of the journey, and so is intimately

[
viii
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bound up with the concepts of space and time. And, Einstein

claimed, space and time—in contrast to Newton’s intuitively

sensible description—are not fixed and unchanging. Instead,

they’re fluid and malleable. Space and time, he argued, adjust

themselves to keep something else—the speed of light—fixed

and eternal, regardless of the motion executed by the light’s

source or someone observing it.

In practice, this means that ifyou measure the length of an ob-

ject—a car, a plane, a whatever—that’s in motion, the result

you’ll find is less than if the object were stationary. And ifyou ob-

serve a clock that is in motion, you’ll find that its rate of ticking is

less than an identical clock that’s stationary. Roughly speaking,

spatial separations shrink and time slows for an object in motion.

These spectacular features of space and time remained fully hid-

den until 1905 because although the effects are real, they’re

miniscule except when the speeds involved approach that of

light. It took the genius of Einstein to see beyond everyday per-

ception and reveal the true character of space and time.

The discovery of general relativity grew out of special relativ-

ity, but took Einstein ten more years to complete. Once again, a

major impetus for Einstein was a blatant conflict he found when

closely examining some of Newton’s earlier insights. In this

case, the focal point was the force of gravity and, in particular,

how quickly gravity can exert its influence. According to special

relativity, nothing—no object, no signal, no information—can

travel from one point in the universe to another at a speed

greater than the speed of light. Yet, as Einstein realized, accord-

ing to Newton’s universal law of gravity, a massive body like the

sun exerts a gravitational pull on other massive bodies, such as

the planets, which is instantaneous. According to Newton, were

the sun to somehow change its mass or its position, we would

immediately become aware of the change because the sun’s

IX
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gravitational pull on the earth would immediately change. And
an immediate change is one that far exceeds the speed limit set

by light. Einstein’s motivation to seek a new theory of gravity

thus came not from a conflict between Newton’s equations and
experimental data, but from a conflict between Newton’s de-

scription of gravity and Einstein’s own special relativity. To a the-

orist like Einstein, theoretical inconsistency can be as important

as dissonance derived from experimental observations.

The resolution of this conflict was not short in coming. In

1912, after some five years of contemplation, Einstein wrote to

his friend Arnold Sommerfeld that “compared with under-

standing gravity, the special theory of relativity was mere child’s

play.” Nevertheless, Einstein resolutely kept at it. His line of at-

tack was to understand the mechanism by which gravity oper-

ates—after all, how does the sun, some 93 million miles distant,

influence the earth’s motion? The sun never touches the earth,

so how is the force we commonly call gravity communicated
over such vast distances of largely empty space? This is a mys-

tery Newton himself was well aware of, noting in his Principia that

he had been unable to figure out the means by which gravitational

influence is transmitted—and that, henceforth, he was leaving

that problem to the “consideration of the reader.” No doubt,

many a reader read that challenge and read on, but Einstein was

different. He was willing to take on this two-hundred-year-old chal-

lenge in the hopes that if he understood how gravity really works,

he might resolve the conflict between Newton’s description of

gravity and the speed limit set by special relativity.

Einstein’s hope proved well founded. By 1915, Einstein came
up with the general theory of relativity in which he identified

the very fabric of spacetime as the medium that transmits the

force of gravity. Einstein argued that much as a large rock sit-

ting on a trampoline causes the canvas to curve—and in that

way affects the motion of a marble rolling on the trampoline’s
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surface—a large astrophysical body (the sun, the earth, a neu-

tron star) immersed within spacetime causes the fabric of the

cosmos to curve—and in that way affects the motion of other

bodies moving nearby. As the earth orbits the sun, according to

general relativity, it rolls along a valley in the warped spacetime

fabric caused by the sun’s presence.

This is a stunning proposal. With special relativity, Einstein

had shown that the cosmic scaffolding could not be dismantled

into rigid, universally agreed upon struts of space and time.

Now, with general relativity, he argued that the shape of the

cosmic scaffolding responds to the presence of matter or energy

—

and, in turn, the shape of spacetime affects how other objects

move. Space and time, according to Einstein, are participants

in the evolution of the universe.

A proposal that so dramatically challenges previous concep-

tions requires dramatic experimental support. Through its un-

derlying mathematical formulation, which owes much to the

nineteenth-century geometrical insights of Bernhard Reimann,

general relativity makes detailed predictions for how objects

move under the force of gravity (i.e., how the curvature of

spacetime affects the motion of objects). When these predic-

tions and those of Newton’s theory of gravity are compared

with experimental observations, Einstein’s are always at least a

little more accurate, vindicating general relativity’s claim to

supplant Newton’s theory. And of prime importance, when

Einstein calculated the speed by which warps and curves travel

through space—the speed of gravity in his new formulation

—

the answer he came to was thoroughly gratifying. Unlike in

Newton’s theory in which gravity supposedly exerts its force in-

stantaneously over any distance, in general relativity gravity

travels at exactly the speed of light, fully in keeping with the cen-

tral dictum of the special theory of relativity that nothing can

exceed light speed.

[xi]
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Einstein published the general theory of relativity in 1916,

arguably the most important year in our understanding of

space and time. Within general relativity, the special theory was

seen to be a special case—the case in which one considers

space and time in the absence of a background distribution of

matter and energy, i.e., space and time in the absence of grav-

ity. Adding gravity, Einstein discovered, breathes a wholly unex-

pected fluidity and flexibility into spacetime.

* * *

In the century since relativity’s discovery, Einstein’s break-

throughs have been understood more deeply and their implica-

tions for the cosmos appreciated more fully. Here are five high-

lights.

First, much has happened on the experimental front. The

initial experimental tests of relativity were somewhat indirect.

General relativity’s prediction for the bending of starlight pass-

ing by the sun, which was confirmed by two teams of as-

tronomers during the solar eclipse of 1919, is rightly heralded

as the observation that convinced the world that Einstein’s new

theory was correct. However, with relativity’s yielding bizarre

predictions such as motion and gravity being able to affect the

rate of time’s passage, one can’t help longing to see direct veri-

fication. The observational fact that short-lived muon particles

produced in the upper atmosphere by cosmic ray collisions are

able to survive the long journey to Earth’s surface (by moving

quickly, the muons’ internal clocks slow relative to ours, and

hence the moving muons live longer than their stationary

counterparts, allowing them to complete the journey to the

surface of the earth) is a step closer to direct confirmation, but

the disconnect between a muon’s millionth-of-a-second life-

span and time as experienced in everyday life can still make

[xii]
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this confirmation of relativity seem remote and theoretical. In

1971, an experiment carried out byJoseph Haefle and Richard

Keating went a long way toward bridging this gap. They strapped

a clock (albeit an atomic clock) into a passenger seat in a Pan

Am jet, and closely monitored it as the plane flew around the

earth. Because the plane was in motion, and also because it ex-

perienced a slightly weaker gravitational field due to its in-

creased distance from Earth’s center, relativity predicts that by

the end of the journey, the onboard clock should differ from

Earthbound stationary clocks by a few billionths of a second.

Indeed, this is just what the experimenters found, thus provid-

ing a direct confirmation of relativity’s conclusion that the pas-

sage of time—real time, the kind of time measured by clocks

—

is affected by motion and by gravity.

Second, and relatedly, new experiments are currently under-

way to test some of the more subtle implications of relativity.

Gravity Probe B, a satellite hovering hundreds of miles above

Earth’s surface, is trying to give the first direct confirmation of

relativity’s claim that not only does a massive body warp the

spacetime fabric, but when it turns it drags spacetime into a

whirlpool-like spin. By pointing the most accurate gyroscopes

ever fabricated at a chosen distant star, the experimenters hope

to observe relativity’s prediction that, over the course of a year,

the earth’s rotation will drag spacetime enough to cause the

onboard gyroscopes’ axes to turn by about a hundred-thou-

sandth of a degree. Measuring such a tiny turning angle is a sig-

nificant challenge, but after some forty years of development,

the experimenters believe they have the technological fidelity

to do so. Another difficult but tremendously exciting experi-

ment is the search for gravitational waves. According to general

relativity, when a massive object moves it can cause the fabric of

space to undulate, somewhat like the surface of a pond into

which a pebble has been tossed. Were such a wave of undulat-

[ xiii ]
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ing space to roll by Earth, all material objects would be

stretched one way, and then the other, as the wave of distorted

space passed. The challenge in detecting these gravitational

waves is that those produced by ordinary phenomena (drop-

ping a cup, two cars colliding, setting off an explosive, etc.) are

too tiny to be seen, while those produced by cataclysmic astro-

physical events (stars going supernovae, black holes colliding,

etc.) are larger but their strength diminishes rapidly as they

spread during their long journey to Earth. Scientists have used

general relativity to calculate that gravitational waves produced
by the most violent of astrophysical events, at typical astronomi-

cal distances, would stretch a one-meter-long rod here on Earth

by less than a millionth of a billionth of a centimeter, making
detection enormously difficult. Nevertheless, in the United

States two gravitational wave detectors are now in operation

(and around the world, a number of others are planned or in

operation) which, at least in principle, have the capacity to

measure such a tiny stretching of matter. This experiment is

particularly important because successfully detecting a gravita-

tional wave would be more than just confirming a remaining

prediction of the general theory of relativity. Because of the in-

trinsic weakness of the gravitational force, gravitational waves

can penetrate realms that are opaque to visible light and elec-

tromagnetic radiation more generally. Thus, the detection of

gravitational waves could very well open up a new field of gravi-

tational wave-based astronomy in which the cosmos is studied

via gravitational—not electromagnetic—radiation. Some physi-

cists are even hopeful that gravitational waves may one day

allow us to peer back to the big bang itself.

A third development stems from the work of Karl Schwarz-

child, a Russian physicist, who shortly after Einstein published

general relativity solved Einstein’s equations to puzzling effect.

Schwarzchild found that if enough matter were crushed into a

t xiv]
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small enough volume (e.g., were the entire earth crushed into

a one-inch diameter ball)
,
the resulting warpage of spacetime

would become so severe that nothing—not even light—would

be able to escape the resulting powerful gravitational pull.

Einstein was surprised by this solution, and felt that the ex-

treme conditions Schwarzchild was envisioning would never be

attained in the real world. But today, observations using power-

ful Earth- and space-based telescopes have revealed regions suf-

fused with intense gravitational fields in which downward-spi-

raling matter heats up and gives off a spectrum of x-rays that is

precisely in keeping with those expected from matter just be-

fore heading over the edge of one of Schwarzchild’s “dark

stars” (later christened “black holes” by the eminent physicist

John Wheeler). Such data leaves little doubt that black holes

are real, and perhaps even ubiquitous. Astronomers now be-

lieve that many galaxies have a giant black hole sitting at their

center. For example, there is observational evidence that even

our own Milky Way galaxy, at its core, has a black hole weighing

more than three million times as much as the sun. An important

problem, which has resisted resolution for more than twenty-

five years, is to determine what happens in the deep interior of

a black hole. General relativity seems to suggest that time

comes to an end at the black hole’s center, but as yet no one

has figured out what that really means or whether quantum

mechanical considerations might justify the conclusion.

Coming to grips with this problem will likely give deep insights

into the fundamental nature of space and time.

Fourth, gravity is the dominant force when considering the

physics of large agglomerations of matter such as stars and

galaxies. Hence, the grandest possible arena for applying gen-

eral relativity is the largest such agglomeration: the entirety of

the universe itself. Cosmology is the name given to the study of

the origin and evolution of the universe and is a field, not sur-

[xv]
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prisingly, that general relativity has revolutionized. Before

1916, there had been no shortage of cosmologies proposed by

various of the world’s theologians and natural philosophers.

But with the discovery of general relativity, cosmology entered

the realm of rigorous science. In fact, within just a couple of

years, Einstein realized that the cosmology implied by general

relativity was thoroughly unexpected. The fabric of space, ac-

cording to Einstein’s equations, cannot be static: the universe

can expand or contract, but it can’t stay put. Even Einstein,

maverick thinker that he was, found this conclusion too out-

landish to accept. “Clearly” the universe, on the largest of

scales, is fixed and unchanging. Thus, in 1917, to remedy this

problematic implication of general relativity, Einstein modi-

fied his equations by introducing the so-called cosmological

constant—a uniform energy throughout space that could

exert an outward push and hence balance the inward pull of

gravity, yielding a static cosmos. Some of Einstein’s contempo-
raries—most notably, the Belgian priest Georges Lemaitre and
the Russian mathematician and meteorologist Alexander

Friedmann—were less certain that the universe really was un-

changing, and so during the 1920s they investigated a number
of possible cosmologies emerging from the equations of gen-

eral relativity, both with and without the cosmological con-

stant. All of these theoretical studies came to a head in the wa-

tershed year for cosmology—1929. In that year, Edwin Hubble,

using the 100-inch telescope at Mount Wilson Observatory,

concluded that distant galaxies are rushing away from us with

a speed proportional to their distance, in perfect consonance

with the general relativistic cosmologies—without a cosmologi-

cal constant—that Lemaitre and Friedmann had developed

mathematically. The fabric of space is stretching with time.

Had Einstein been willing to accept the implication of his own
general theory of relativity at face value, he would have pre-

[ xvi ]
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dieted the expansion of the universe a dozen years before it was

observed. Today, cosmology continues to be one of the most

active areas of theoretical and observational research, with re-

fined versions of Lemaitre’s and Friedmann’s works being de-

veloped worldwide, all founded on the equations of general

relativity. Such research has led to what many physicists con-

sider the most significant surprise of the last decade, which is

the fifth of our highlights.

With Hubble’s observations, and much follow-up research that

confirmed his conclusions, the community of physicists became

convinced that the universe is expanding. But because gravity is

an attractive force—a force that pulls things together—most

everyone was also convinced that the pull of gravity was causing

the rate of expansion to slow with time. An interesting research

problem, then, was to determine how quickly the expansion

was slowing, as this would give insight into how much matter

the universe contains (more matter implies greater gravita-

tional pull and hence larger slow-down rate). In the mid 1990s,

two teams set out to make this measurement: Saul Perlmutter

and his collaborators in the Supernova Cosmology Project, and

Brian Schmidt and his collaborators in the High-Z Supernova

Search program. By the late 1990s, both groups reached the

same astonishing conclusion: the expansion of space is not

slowing down. Instead, their observations of distant supernovae

showed that for the last seven billion years, the expansion of

space has been speeding up. How could this be? This is a question

researchers are still struggling to answer, but one favored expla-

nation takes us full circle, right back to 1917. If the universe

were to have a cosmological constant of just the right value,

then up until about seven billion years ago its outward push

would have been overshadowed by the more powerful inward

pull of matter’s ordinary gravitational attraction. Then, as the

universe expanded and matter got spread more thinly through-

[ xvii ]



INTRODUCTION

out space, gravitational attraction would steadily drop and at the

seven-billion-year mark the repulsive push of the cosmological

constant would become dominant. From that point on, the rate

of expansion of space would increase—the expansion of space

would accelerate, in agreement with the recent observations.

In short, Einstein’s “blunder” of 1917, his introduction of an

outward-pushing cosmological constant, may actually be cor-

rect. If these results hold up, Einstein would thus have gotten

the value of the cosmological constant wrong (since he wanted
it to precisely balance the inward pull of gravity rather than be-

come stronger)
, but the concept itself would be confirmed. To

date, examination of the rate by which the expansion of space

is increasing has led researchers to conclude that the cosmo-

logical constant accounts for about 70 percent of the energy of

the entire universe—and so the majority of the universe’s en-

ergy budget may well be stored in this still mysterious, invisible

entity. Many researchers agree that understanding fully the na-

ture of this invisible energy is one of the most important issues

in physics and cosmology.

* * *

After Einstein succeeded with special relativity in merging

space and time into the unified whole of spacetime, and after he

succeeded with general relativity in demonstrating that the force

of gravity is nothing but the warping and curving of spacetime,

he wondered whether he might go even further and bring the

other force known at that time—the electromagnetic force

—

into the geometrical framework he had developed. It was a bold

vision. Einstein imagined a single theory, perhaps expressed by a

single principle or equation, which might describe all of nature’s

forces. For the last thirty years of his life, Einstein sought this so-

called unified theory with unrelenting passion, and even though

[ xviii ]
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there were reports that he had succeeded (one of which was a

cover story in the New York Times), every time he closely exam-

ined the results, Einstein concluded that he hadn’t reached the

goal. Nevertheless, these failures did not diminish his belief in

unification. In fact, in 1955 as he lay dying in Princeton Hospital,

he asked for a pad of paper on which he had been scribbling

equations in the desperate hope that in his final moments the

unified theory would come to him. It didn’t.

For many years after Einstein died, it seemed like the dream

of unification had died with him. By the late 1960s and early

1970s, however, this changed. Through the combined efforts of

Sheldon Glashow, Steven Weinberg, and Abdus Salam, the weak

nuclear force (a force Einstein was hardly aware of, but which is

now understood to underlie radioactivity) and the electromag-

netic force were unified into the electroweak force—a theory

that was confirmed experimentally by the end of the 1970s. In

1974, Glashow, together with his colleague Howard Georgi,

took the next step by developing a “grand unified theory,”

which merged the electroweak force and the strong nuclear

force (the force now known to hold atomic nuclei together)

into a single mathematical structure. Although their particular

model has since been experimentally ruled out, many physicists

believe that it is just a matter of time before some version of

grand unification is confirmed. But even with these concrete

steps toward Einstein’s dream of unification, one force has been

conspicuously left out. For decades, all attempts to incorporate

gravity, the force closest to Einstein’s heart, into a unified theory

proved theoretically inconsistent.

The problem is that quantum mechanics, which underlies

the description of nature’s three nongravitational forces,

proves to be fundamentally at odds with Einstein’s description

of gravity. The reason, briefly put, is that the Einsteinian image

of space as a gendy curving geometrical shape runs headlong

[
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into the core idea of quantum theory: the uncertainty princi-

ple. In 1927, Werner Heisenberg discovered that quantum me-
chanics entails an unavoidable uncertainty that limits how
sharply various complementary physical features (such as a par-

ticle’s position and its velocity) can be delineated. This uncer-

tainty results in what physicists call “quantum fluctuations”:

particles, roughly speaking, unavoidably jitter this way and that

as their positions and velocities fluctuate within the window set

by quantum uncertainty. These particle fluctuations have been
much studied experimentally, and Heisenberg’s uncertainty

principle has been confirmed to high precision. Where things

get more troublesome, though, is when the uncertainty princi-

ple is applied not to ordinary particles but to the force of grav-

ity. Since gravity, in Einstein’s description, is nothing but the

curvature of spacetime, quantum fluctuations in the gravita-

tional force are fluctuations in the spacetime fabric itself.

When physicists studied this incarnation of quantum uncer-

tainty mathematically, they found that over small distance and
time scales quantum gravitational fluctuations would become
so severe that spacetime would not resemble the nice, gently

curving geometry on which Einstein based general relativity.

Instead, spacetime would resemble a frothing, boiling cauldron

in which space violently heaved to and fro in a manner that

caused Einstein’s equations to break down.

For many years, researchers tried to resolve this incompati-

bility between general relativity and quantum mechanics, but it

wasn’t until the discovery and development of superstring the-

ory in the 1970s and, most notably, in the 1980s that theorists

found a viable direction to pursue. Superstring theory claims

that the traditional conception that the fundamental particles

of nature are points of vanishingly small size is wrong. In its

place, the theory posits that the most fundamental entities

making up matter are tiny one-dimensional filaments of energy
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that, if magnified sufficiently, would look like little vibrating

strings. “Sufficiently” here means by a factor many billions of

times more than we can achieve even with our most sophisticated

instruments, and that’s why, according to superstring theory,

physicists have long thought that the elementary particles were

dots.

Now, this change from point-particles to strings that are so

small they look like points might not sound like it would ac-

complish much. But it does.

Superstring theory successfully merges general relativity and

quantum mechanics. The full explanation for how this is ac-

complished is involved, but here’s a rough way to understand

it. By introducing strings as the fundamental ingredients,

superstring theory takes the old idea of point-particles and

spreads it out—stretches it out—into the new idea of tiny fila-

ments. This spreading of points into filaments also implies that

the microscopic structure of space is spread out relative to how

it was envisioned (and how it was mathematically modeled in

calculations) prior to superstring theory. When strings spread

space at the microscopic level, the violent undulations that

were the source of the theoretical conflict between quantum

mechanics and general relativity, get stretched out and hence

diluted. And, as detailed calculations attest, this dilution of the

violent spacetime fluctuations is just enough to allow quantum

mechanics and general relativity to merge into a mathemati-

cally consistent quantum theory of gravity.

Moreover, not only does superstring theory merge general

relativity with quantum mechanics, but it also has the capacity

to embrace—on an equal footing—the electromagnetic force,

the weak force, and the strong force. Within superstring theory,

each of these forces is simply associated with a different vibra-

tional pattern of a string. And so, like a guitar chord composed

of four different notes, the four forces of nature are united

[
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within the music of superstring theory. What’s more, the same
goes for all of matter as well. The electron, the quarks, the neu-
trinos, and all other particles are also described in superstring

theory as strings undergoing different vibrational patterns.

Thus, all matter and all forces are brought together under the

same rubric of vibrating strings—and that’s about as unified as

a unified theory could be.

Finally, superstring theory requires that the fabric of the cos-

mos have more than three spatial dimensions. This may sound
strange and surprising when first encountered, but it’s an idea

that pre-dates superstring theory and one that Einstein himself

pursued for some time. Back in 1919, a German mathematician
named Theodor Kaluza found that if he posited a fourth di-

mension of space and reformulated general relativity in this en-

larged setting, the resulting set of equations contained those of
Einstein’s original formulation and—amazingly—also those of
Maxwell’s electrodynamics. A fourth dimension of space was
therefore capable of bringing the equations of gravity and elec-

tromagnetism together. After a bit of hesitation, Einstein be-

came an enthusiastic supporter of this approach to unifying

these two forces, but after years of research (with important
contributions by Oskar Klein) this so-called Kaluza-Klein ap-

proach to unification could not be made to work in detail (for

example, it proved difficult to incorporate an electron with the

known values for its mass and charge into this framework). In

superstring theory, to the contrary, the Kaluza-Klein idea of
extra dimensions emerges from the theory itself, and the prob-
lems that beset the original Kaluza-Klein attempt do not arise.

What’s more, the geometry of the extra dimensions—which
are usually assumed to be very small in spatial extent to explain

why we don’t see them—has an impact on how strings vibrate

(much as the geometry of a French horn affects the vibrational

patterns of air streams traversing its interior, the geometry of
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the extra dimensions affects the vibrational patterns of strings)

and hence on the physics we observe. This means that the

geometry of spacetime may be bound up not only with the

force of gravity, as Einstein found, but through the extra di-

mensions; the geometry of spacetime may also determine the

masses and charges of elementary particles (these particle

properties are determined by string vibrational patterns which

in turn are influenced by the geometry of the extra dimen-

sions). In short, superstring theory suggests that geometry may

well explain why the universe is the way it is.

Were Einstein alive, I think there is much within superstring

theory that he would find compelling and exciting. Superstring

theory carries forward his quest for unification. It follows his

philosophy, evidenced in general relativity, of relying heavily on

geometrical ideas to describe the cosmos. And superstring the-

ory shows how general relativity can be made compatible with

quantum mechanics. Even so, Einstein would no doubt also

view superstring theory with much skepticism. Shortly after

they were proposed, special and general relativity could be sub-

jected to rigorous testing, and so when these theories made

outrageous claims, they had to be taken seriously because ex-

periments had shown that the theories work. To the contrary,

superstring theory does not yet have experimental support.

Making two experimentally confirmed theories—general rela-

tivity and quantum mechanics—compatible is an important

step. But no one will be convinced that superstring theory is

right, that it is the unified theory Einstein sought but never

found, until the theory is itself confirmed experimentally. With

the increased power of the world’s accelerators and ever more

refined telescopes gathering data of unprecedented precision,

such confirmation could happen within this century. If so,

Einstein’s theories of relativity would be seen as part of a much

grander theoretical synthesis. If not, the world’s physicists will
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no doubt carry on the search for unification down other av-

enues (some other approaches, such as loop quantum gravity,

are already highly developed and being pursued vigorously).

Einstein lit the torch of unification. Physicists that have and will

continue to follow will do all they can to keep it burning.

xxiv



A NOTE ON THE FIFTH EDITION

For the present edition I have completely

revised the “Generalization of Gravitation

Theory” under the title “Relativistic Theory

of the Non-symmetric Field.” For I have

succeeded—in part in collaboration with

my assistant B. Kaufman—in simplifying

the derivations as well as the form of the field

equations. The whole theory becomes

thereby more transparent, without changing

its content.

A. E.—December 1954





THE MEANING OF RELATIVITY





SPACE AND TIME

IN PRE-RELATIVITY PHYSICS

HE theory of relativity is intimately connected with

the theory of space and time. I shall therefore begin

with a brief investigation of the origin of our ideas of space

and time, although in doing so I know that I introduce a

controversial subject. The object of all science, whether

natural science or psychology, is to co-ordinate our experi-

ences and to bring them into a logical system. How are

our customary ideas of space and time related to the

character of our experiences?

The experiences of an individual appear to us arranged

in a series of events; in this series the single events which

we remember appear to be ordered according to the crite-

rion of “earlier” and “later,” which cannot be analysed

further. There exists, therefore, for the individual, an

I-time, or subjective time. This in itself is not measurable.

I can, indeed, associate numbers with the events, in such

a way that a greater number is associated with the later

event than with an earlier one; but the nature of this associa-

tion may be quite arbitrary. This association I can define

by means of a clock by comparing the order of events fur-

nished by the clock with the order of the given series of

events. We understand by a clock something which pro-

vides a series of events which can be counted, and which has

other properties of which we shall speak later.

By the aid of language different individuals can, to a cer-

tain extent, compare their experiences. Then it turns out

[1 ]
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that certain sense perceptions of different individuals

correspond to each other, while for other sense perceptions

no such correspondence can be established. We are

accustomed to regard as real those sense perceptions which
are common to different individuals, and which therefore

are, in a measure, impersonal. The natural sciences, and
in particular, the most fundamental of them, physics, deal
with such sense perceptions. The conception of physical

bodies, in particular of rigid bodies, is a relatively constant

complex of such sense perceptions. A clock is also a body,
or a system, in the same sense, with the additional property

that the series of events which it counts is formed of elements
all of which can be regarded as equal.

The only justification for our concepts and system of

concepts is that they serve to represent the complex of

our experiences; beyond this they have no legitimacy. I

am convinced that the philosophers have had a harmful
effect upon the progress of scientific thinking in removing
certain fundamental concepts from the domain of empiri-

cism, where they are under our control, to the intangible

heights of the a priori. For even if it should appear that

the universe of ideas cannot be deduced from experience
by logical means, but is, in a sense, a creation of the human
mind, without which no science is possible, nevertheless

this universe of ideas is just as little independent of the

nature of our experiences as clothes are of the form of

the human body. This is particularly true of our con-
cepts of time and space, which physicists have been obliged

by the facts to bring down from the Olympus of the a priori

in order to adjust them and put them in a serviceable

condition.

We now come to our concepts and judgments of space.

It is essential here also to pay strict attention to the rela-

[ 2 ]
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tion of experience to our concepts. It seems to me that

Poincare clearly recognized the truth in the account he

gave in his book, “La Science et l’Hypothese.” Among
all the changes which we can perceive in a rigid body those

which can be cancelled by a voluntary motion of our body
are marked by their simplicity; Poincare calls these, changes

in position. By means of simple changes in position we can

bring two bodies into contact. The theorems of con-

gruence, fundamental in geometry, have to do with the

laws that govern such changes in position. For the con-

cept of space the following seems essential. We can form
new bodies by bringing bodies B, C, ... up to body A;

we say that we continue body A. We can continue body A
in such a way that it comes into contact with any other

body, X. The ensemble of all continuations of body A
we can designate as the “space of the body A.” Then it

is true that all bodies are in the “space of the (arbitrarily

chosen) body A.” In this sense we cannot speak of space in

the abstract, but only of the “space belonging to a body A.”

The earth’s crust plays such a dominant role in our daily

life in judging the relative positions of bodies that it has

led to an abstract conception of space which certainly

cannot be defended. In order to free ourselves from this

fatal error we shall speak only of “bodies of reference,”

or “space of reference.” It was only through the theory of

general relativity that refinement of these concepts became
necessary, as we shall see later.

I shall not go into detail concerning those properties

of the space of reference which lead to our conceiving

points as elements of space, and space as a continuum.

Nor shall I attempt to analyse further the properties of

space which justify the conception of continuous series

of points, or lines. If these concepts are assumed, together

[ 3 ]
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with their relation to the solid bodies of experience, then

it is easy to say what we mean by the three-dimensionality

of space; to each point three numbers, x 3) x 2 ,
x3 (co-ordi-

nates), may be associated, in such a way that this associa-

tion is uniquely reciprocal, and that xh x2 ,
and x 3 vary

continuously when the point describes a continuous series

of points (a line).

It is assumed in pre-relativity physics that the laws of

the configuration of ideal rigid bodies are consistent with

Euclidean geometry. What this means may be expressed

as follows: Two points marked on a rigid body form an

interval. Such an interval can be oriented at rest, rela-

tively to our space of reference, in a multiplicity of ways.

If, now, the points of this space can be referred to co-ordi-

nates * 1 ,
x2 ,

x 3 ,
in such a way that the differences of the

co-ordinates, Axi, Ax 2 ,
Ax 3 ,

of the two ends of the interval

furnish the same sum of squares,

(1) r
2 = A*i 2 + Ax 2

2 + Ax 3
2

for every orientation of the interval, then the space of

reference is called Euclidean, and the co-ordinates Car-

tesian.* It is sufficient, indeed, to make this assumption

in the limit for an infinitely small interval. Involved

in this assumption there are some which are rather less

special, to which we must call attention on account of

their fundamental significance. In the first place, it is

assumed that one can move an ideal rigid body in an

arbitrary manner. In the second place, it is assumed

that the behaviour of ideal rigid bodies towards orienta-

tion is independent of the material of the bodies and their

changes of position, in the sense that if two intervals can

* This relation must hold for an arbitrary choice of the origin and of the

direction (ratios Ax\ : Ax> : Ax.<) of the interval.

[
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once be brought into coincidence, they can always and

everywhere be brought into coincidence. Both of these

assumptions, which are of fundamental importance for

geometry and especially for physical measurements, natu-

rally arise from experience; in the theory of general rela-

tivity their validity needs to be assumed only for bodies

and spaces of reference which are infinitely small compared

to astronomical dimensions.

The quantity r we call the length of the interval. In

order that this may be uniquely determined it is necessary

to fix arbitrarily the length of a definite interval; for

example, we can put it equal to 1 (unit of length). Then

the lengths of all other intervals may be determined. If

we make the x, linearly dependent upon a parameter X,

x, — a, T \b ,,

we obtain a line which has all the properties of the straight

lines of the Euclidean geometry. In particular, it easily

follows that by laying off n times the interval s upon a

straight line, an interval of length n • s is obtained. A
length, therefore, means the result of a measurement carried

out along a straight line by means of a unit measuring rod.

It has a significance which is as independent of the system

of co-ordinates as that of a straight line, as will appear in

the sequel.

We come now to a train of thought which plays an

analogous role in the theories of special and general rela-

tivity. We ask the question: besides the Cartesian co-ordi-

nates which we have used are there other equivalent

co-ordinates? An interval has a physical meaning which

is independent of the choice of co-ordinates; and so has

the spherical surface which we obtain as the locus of the

end points of all equal intervals that we lay off from an

[ 5 ]
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arbitrary point of our space of reference. If x, as well as

x' , ( v from 1 to 3) are Cartesian co-ordinates of our space

of reference, then the spherical surface will be expressed

in our two systems of co-ordinates by the equations

(2) X Ax, 2 = const -

(2a) X Ax', 2 = const -

How must the x'

,

be expressed in terms of the at, in order

that equations (2) and (2a) may be equivalent to each

other? Regarding the x '
, expressed as functions of the

x„ we can write, by Taylor’s theorem, for small values of

the Ax„

Ax',

a

dV,
dxjdx.

Ax0Axs

If we substitute (2a) in this equation and compare with

(1), we see that the x'

,

must be linear functions of the x,.

If we therefore put

(3 )
x 9 Oip "I

- bpaxa
a

or

(3a) Ax , — b paAxa

a

then the equivalence of equations (2) and (2a) is expressed

in the form

(2b) X Ax\ 2 = X X Ax, 2 (X independent of Ax,)

It therefore follows that X must be a constant. If we put

X = 1, (2b) and (3a) furnish the conditions

(4 ) b tab bap

[ 6 ]
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in which 5oS = 1, or 5oS = 0, according as a = /3ora ^ /3.

The conditions (4) are called the conditions of ortho-

gonality, and the transformations (3), (4), linear orthogonal

transformations. If we stipulate that r
2 = ^ Ax, 2 shall be

equal to the square of the length in every system of co-ordi-

nates, and if we always measure with the same unit scale,

then X must be equal to 1 . Therefore the linear orthogonal

transformations are the only ones by means of which we

can pass from one Cartesian system of co-ordinates in our

space of reference to another. We see that in applying

such transformations the equations of a straight line

become equations of a straight line. Reversing equations

(3a) by multiplying both sides by b,s and summing for all

the v's, we obtain

(5) ^ b ypAx ,
= ^ b yab,pAxa , .

ba^Axa Axp

ya a

The same coefficients, b, also determine the inverse sub-

stitution of Ax,. Geometrically, b,a is the cosine of the

angle between the x', axis and the xa axis.

To sum up, we can say that in the Euclidean geometry

there are (in a given space of reference) preferred systems

of co-ordinates, the Cartesian systems, which transform

into each other by linear orthogonal transformations.

The distance s between two points of our space of reference,

measured by a measuring rod, is expressed in such co-ordi-

nates in a particularly simple manner. The whole of

geometry may be founded upon this conception of distance.

In the present treatment, geometry is related to actual

things (rigid bodies), and its theorems are statements con-

cerning the behaviour of these things, which may prove to

be true or false.

[ 7 ]
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One is ordinarily accustomed to study geometry divorced

from any relation between its concepts and experience.

There are advantages in isolating that which is purely

logical and independent of what is, in principle, incomplete

empiricism. This is satisfactory to the pure mathemati-

cian. He is satisfied if he can deduce his theorems from

axioms correctly, that is, without errors of logic. The
questions as to whether Euclidean geometry is true or not

does not concern him. But for our purpose it is necessary

to associate the fundamental concepts of geometry with

natural objects; without such an association geometry is

worthless for the physicist. The physicist is concerned

with the question as to whether the theorems of geometry

are true or not. That Euclidean geometry, from this

point of view, affirms something more than the mere deduc-

tions derived logically from definitions may be seen from

the following simple consideration.

Between n points of space there are distances,

between these and the 3n co-ordinates we have the

relations

s„,
2 = (*i<m> — xu,))

2 + (x2 („) — x 2 (,))
2 + . . •

From these
^
—— equations the 3n co-ordinates

may be eliminated, and from this elimination at least

n ^ n ~
2
—— — 3n equations in the s„, will result.* Since

the s„, are measurable quantities, and by definition are

independent of each other, these relations between the

s„, are not necessary a priori.

n(n — 1)
* In reality there are — 3it + 6 equations.

[ 8 ]
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From the foregoing it is evident that the equations of

transformation (3), (4) have a fundamental significance in

Euclidean geometry, in that they govern the transforma-

tion from one Cartesian system of co-ordinates to another.

The Cartesian systems of co-ordinates are characterized

by the property that in them the measurable distance

between two points, s, is expressed by the equation

j
2 = X A*, 2

.

If K(Z ,) and K\z ,) are two Cartesian systems of co-ordi-

nates, then

2 A*, 2 = £ A*', 2
.

The right-hand side is identically equal to the left-hand

side on account of the equations of the linear orthogonal

transformation, and the right-hand side differs from the

left-hand side only in that the x, are replaced by the x'

This is expressed by the statement that 2 A*, 2
is an

invariant with respect to linear orthogonal transforma-

tions. It is evident that in the Euclidean geometry only

such, and all such, quantities have an objective signifi-

cance, independent of the particular choice of the Cartesian

co-ordinates, as can be expressed by an invariant with

respect to linear orthogonal transformations. This is the

reason that the theory of invariants, which has to do with

the laws that govern the form of invariants, is so important

for analytical geometry.

As a second example of a geometrical invariant, con-

sider a volume. This is expressed by

V = j J j dx^dxidxz.

[9]
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By means of Jacobi’s theorem we may write

dx \dx\dx' 3

d(x'i, a-' 2 ,
x' 3)

d(x h x 2 ,
x 3)

dxidx2dx 3

where the integrand in the last integral is the functional

determinant of the x'

,

with respect to the x„ and this by

(3) is equal to the determinant \b„,\ of the coefficients

of substitution, b,a . If we form the determinant of the

from equation (4), we obtain, by means of the theorem

of multiplication of determinants,

(6) 1 = IsJ = \Z b,abJ = jij 2
;
\bj,

- ±1III,,

If we limit ourselves to those transformations which have

the determinant + 1* (and only these arise from con-

tinuous variations of the systems of co-ordinates) then V

is an invariant.

Invariants, however, are not the only forms by means

of which we can give expression to the independence of

the particular choice of the Cartesian co-ordinates. Vec-

tors and tensors are other forms of expression. Let us

express the fact that the point with the current co-ordinates

x, lies upon a straight line. We have

x, — A, — \B, (

v

from 1 to 3).

Without limiting the generality we can put

Zb .
2 = I-

* There are thus two kinds of Cartesian systems which are designated

as “right-handed” and “left-handed” systems. The difference between

these is familiar to every physicist and engineer. It is interesting to note

that these two kinds of systems cannot be defined geometrically, but only

the contrast between them.

[ 10 ]



PRE-RELATIVITY PHYSICS

If we multiply the equations by b (compare (3a) and

(5)) and sum for all the v's, we get

x\ — A'ff = XB'p

where we have written

B', = £ h,B,; A’, = S W.-
¥ ¥

These are the equations of straight lines with respect

to a second Cartesian system of co-ordinates K'. They

have the same form as the equations with respect to the

original system of co-ordinates. It is therefore evident

that straight lines have a significance which is independent

of the system of co-ordinates. Formally, this depends

upon the fact that the quantities (x, — A,) — \B „ are

transformed as the components of an interval, Ax,. The

ensemble of three quantities, defined for every system of

Cartesian co-ordinates, and which transform as the com-

ponents of an interval, is called a vector. If the three

components of a vector vanish for one system of Cartesian

co-ordinates, they vanish for all systems, because the equa-

tions of transformation are homogeneous. We can thus

get the meaning of the concept of a vector without referring

to a geometrical representation. This behaviour of the

equations of a straight line can be expressed by saying

that the equation of a straight line is co-variant with respect

to linear orthogonal transformations.

We shall now show briefly that there are geometrical

entities which lead to the concept of tensors. Let P0 be

the centre of a surface of the second degree, P any point

on the surface, and £„ the projections of the interval P0P
upon the co-ordinate axes. Then the equation of the

[11 ]
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surface is

In this, and in analogous cases, we shall omit the sign of

summation, and understand that the summation is to be

carried out for those indices that appear twice. We thus

write the equation of the surface

£* = I-

The quantities a„, determine the surface completely, for

a given position of the centre, with respect to the chosen

system of Cartesian co-ordinates. From the known law

of transformation for the £, (3a) for linear orthogonal

transformations, we easily find the law of transformation

for the a„,*:

d 9T b ydH*'

This transformation is homogeneous and of the first degree

in the a„,. On account of this transformation, the a,,,

are called components of a tensor of the second rank (the

latter on account of the double index). If all the com-
ponents, a„„ of a tensor with respect to any system of

Cartesian co-ordinates vanish, they vanish with respect to

every other Cartesian system. The form and the position

of the surface of the second degree is described by this

tensor (a).

Tensors of higher rank (number of indices) may be

defined analytically. It is possible and advantageous to

regard vectors as tensors of rank 1 ,
and invariants (scalars)

as tensors of rank 0. In this respect, the problem of the

theory of invariants may be so formulated: according to

• The equation = 1 may, by (5), be replaced by a ,,b M„/,

= 1, from which the result stated immediately follows.

[ 12 1
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what laws may new tensors be formed from given tensors?

We shall consider these laws now, in order to be able to

apply them later. We shall deal first only with the prop-

erties of tensors with respect to the transformation from

one Cartesian system to another in the same space of

reference, by means of linear orthogonal transforma-

tions. As the laws are wholly independent of the number
of dimensions, we shall leave this number, n, indefinite at

first.

Definition. If an object is defined with respect to every

system of Cartesian co-ordinates in a space of reference of

n dimensions by the na numbers A„ yi, ... (a = number
of indices), then these numbers are the components of a

tensor of rank a if the transformation law is

(7) A . . . — . . . An,f . . .

Remark. From this definition it follows that

(8) A hyf, . . . B^C^D,, . . .

is an invariant, provided that (B), (C), (D) . . . are

vectors. Conversely, the tensor character of (A) may be

inferred, if it is known that the expression (8) leads to an

invariant for an arbitrary choice of the vectors (B), (C),

etc.

Addition and Subtraction. By addition and subtraction

of the corresponding components of tensors of the same

rank, a tensor of equal rank results:

(9) A„„, . . . ± Bn,f . . .

—
. . .

The proof follows from the definition of a tensor given

above.

Multiplication. From a tensor of rank a and a tensor

of rank /3 we may obtain a tensor of rank a + 0 by

[13]
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multiplying all the components of the first tensor by all

the components of the second tensor:

(10) 'T p.p • • • O0> ... Ap Vp . . . Bapy . . .

Contraction. A tensor of rank a — 2 may be obtained

from one of rank a by putting two definite indices equal

to each other and then summing for this single index:

(11) T, ... - Am . . . (
= . . .)

The proof is

A' — bpabpgbpy ... Aa0y ... /I

. A.

a0y •

= b c

In addition to these elementary rules of operation

there is also the formation of tensors by differentiation

(“Erweiterung”):

( 12 )
T1 UJ'P

New tensors, in respect to linear orthogonal transforma-

tions, may be formed from tensors according to these rules

of operation.

Symmetry Properties of Tensors. Tensors are called sym-

metrical or skew-symmetrical in respect to two of their

indices, p and v, if both the components which result

from interchanging the indices /x and v are equal to each

other or equal with opposite signs.

Condition for symmetry: Ap, t = A,pP .

Condition for skew-symmetry: Ap, p
= —A,U p.

Theorem. The character of symmetry or skew-symmetry

exists independently of the choice of co-ordinates, and in

this lies its importance. The proof follows from the

equation defining tensors.

[
14
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Special Tensors.

I. The quantities (4) are tensor components (funda-

mental tensor).

Proof. If in the right-hand side of the equation of

transformation Af, = b^b^A^, we substitute for AaS the

quantities 8aS (which are equal to 1 or 0 according as

a = /3 or a 5^/3), we get

= b

The justification for the last sign of equality becomes

evident if one applies (4) to the inverse substitution (5).

II. There is a tensor (5„ >p . . .) skew-symmetrical with

respect to all pairs of indices, whose rank is equal to the

number of dimensions, n, and whose components are

equal to +1 or —1 according as pvp . . . is an even

or odd permutation of 123 . . .

The proof follows with the aid of the theorem proved

above \b,„\ = 1.

These few simple theorems form the apparatus from

the theory of invariants for building the equations of pre-

relativity physics and the theory of special relativity.

We have seen that in pre-relativity physics, in order to

specify relations in space, a body of reference, or a space

of reference, is required, and, in addition, a Cartesian

system of co-ordinates. We can fuse both these concepts

into a single one by thinking of a Cartesian system of

co-ordinates as a cubical frame-work formed of rods each

of unit length. The co-ordinates of the lattice points of

this frame are integral numbers. It follows from the

fundamental relation

(13) J
2 = A*! 2 + Ax 2

2 + A*3 2

that the members of such a space-lattice are all of unit

[ 15 ]
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length. To specify relations in time, we require in addi-
tion a standard clock placed, say, at the origin of our Carte-

sian system of co-ordinates or frame of reference. If an
event takes place anywhere we can assign to it three co-ordi-

nates, x„, and a time t, as soon as we have specified the time

of the clock at the origin which is simultaneous with the

event. We therefore give (hypothetically) an objective

significance to the statement of the simultaneity of distant

events, while previously we have been concerned only with

the simultaneity of two experiences of an individual. The
time so specified is at all events independent of the position

of the system of co-ordinates in our space of reference, and is

therefore an invariant with respect to the transformation (3).
It is postulated that the system of equations expressing

the laws of pre-relativity physics is co-variant with respect

to the transformation (3), as are the relations of Euclidean

geometry. The isotropy and homogeneity of space is

expressed in this way. * We shall now consider some of

the more important equations of physics from this point

of view.

The equations of motion of a material particle are

< 14> ”w- x-

(dx,) is a vector; dt, and therefore also j, an invariant;

* The laws of physics could be expressed, even in case there were a pre-

ferred direction in space, in such a way as to be co-variant with respect to the

transformation (3); but such an expression would in this case be unsuitable.

If there were a preferred direction in space it would simplify the description

of natural phenomena to orient the system of co-ordinates in a definite way
with respect to this direction. But if, on the other hand, there is no unique
direction in space it is not logical to formulate the laws of nature in such a

way as to conceal the equivalence of systems of co-ordinates that are oriented

differently. We shall meet with this point of view again in the theories of

special and general relativity.

[ 16 ]
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thus

that

is a vector; in the same way it may be shown

is a vector. In general, the operation of dif-

ferentiation with respect to time does not alter the tensor

character. Since m is an invariant (tensor of rank 0),

is a vector, or tensor of rank 1 (by the theorem

of the multiplication of tensors). If the force (X,) has

a vector character, the same holds for the difference

/ d2x \

\ ~dt^
~ X

' )
These equations of motion are therefore

valid in every other system of Cartesian co-ordinates in

the space of reference. In the case where the forces are

conservative we can easily recognize the vector character

of
(X, ). For a potential energy, <F, exists, which depends

only upon the mutual distances of the particles, and is

therefore an invariant. The vector character of the force,

d<f>

X, = — g—, is then a consequence of our general theorem

about the derivative of a tensor of rank 0.

Multiplying by the velocity, a tensor of rank 1, we

obtain the tensor equation

By contraction and multiplication by the scalar dt we

obtain the equation of kinetic energy

If £„ denotes the difference of the co-ordinates of

the material particle and a point fixed in space, then

the £„ have vector character. We evidently have

[17]



PRE-RELATIVITY PHYSICS

may be written

Multiplying this equation by we obtain a tensor

equation

Contracting the tensor on the left and taking the time

average we obtain the virial theorem, which we shall

not consider further. By interchanging the indices and

subsequent subtraction, we obtain, after a simple trans-

formation, the theorem of moments,

•
dA

" dt
= Mr, - M,

It is evident in this way that the moment of a vector

is not a vector but a tensor. On account of their skew-

symmetrical character there are not nine, but only three

independent equations of this system. The possibility of

replacing skew-symmetrical tensors of the second rank in

space of three dimensions by vectors depends upon the

formation of the vector

If we multiply the skew-symmetrical tensor of rank 2

by the special skew-symmetrical tensor 8 introduced

above, and contract twice, a vector results whose compo-
nents are numerically equal to those of the tensor. These

are the so-called axial vectors which transform diffcr-

[ 18 ]
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ently, from a right-handed system to a left-handed system,

from the A.x,. There is a gain in picturesqueness in regard-

ing a skew-symmetrical tensor of rank 2 as a vector in

space of three dimensions, but it does not represent the

exact nature of the corresponding quantity so well as

considering it a tensor.

We consider next the equations of motion of a con-

tinuous medium. Let p be the density, u, the velocity

components considered as functions of the co-ordinates and

the time, X, the volume forces per unit of mass, and p„
the stresses upon a surface perpendicular to the <r-axis

in the direction of increasing x,. Then the equations of

motion area, by Newton’s law,

P
du.

Hi

dp,.

dx.
+ PX,

in which is the acceleration of the particle which at

time t has the co-ordinates x,. If we express this accelera-

tion by partial differential coefficients, we obtain, after

dividing by p,

(16)
du, du, _ _ 1 dp

„

dt
+

dx.
u
• p dx.

^ '

We must show that this equation holds independently

of the special choice of the Cartesian system of co-ordinates.

(u ,) is a vector, and therefore is also a vector. ^ is

du,
a tensor of rank 2, u

,

is a tensor of rank 3. The second
dx

,

term on the left results from contraction in the indices

a, t. The vector character of the second term on the right

is obvious. In order that the first term on the right may

[ 19 ]
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also be a vector it is necessary for p„ to be a tensor.

Then by differentiation and contraction results, and

is therefore a vector, as it also is after multiplication by

the reciprocal scalar -• That p„ is a tensor, and therefore

transforms according to the equation

P nv
= b pah vPp a0l

is proved in mechanics by integrating this equation over

an infinitely small tetrahedron. It is also proved there,

by application of the theorem of moments to an infinitely

small parallelepipedon, that p,„ — p„„ and hence that the

tensor of the stress is a symmetrical tensor. From what

has been said it follows that, with the aid of the rules

given above, the equation is co-variant with respect to

orthogonal transformations in space (rotational trans-

formations); and the rules according to which the quanti-

ties in the equation must be transformed in order that the

equation may be co-variant also become evident.

The co-variance of the equation of continuity,

07) |+^ = o

requires, from the foregoing, no particular discussion.

We shall also test for co-variance the equations which

express the dependence of the stress components upon

the properties of the matter, and set up these equations

for the case of a compressible viscous fluid with the aid

of the conditions of co-variance. If we neglect the vis-

cosity, the pressure, p, will be a scalar, and will depend

only upon the density and the temperature of the fluid.

[
20 ]
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The contribution to the stress tensor is then evidently

in which 5„, is the special symmetrical tensor. This term

will also be present in the case of a viscous fluid. But in

this case there will also be pressure terms, which depend

upon the space derivatives of the We shall assume

that this dependence is a linear one. Since these terms

must be symmetrical tensors, the only ones which enter

will be

a

^for is a scalar^. For physical reasons (no slipping)

it is assumed that for symmetrical dilatations in all direc-

tions, i.e. when

du i _ d« 2 _ du 3 du\ _
dTi

~
fal

~ d73 ’ dTj
etc ’’

~~

there are no frictional forces present, from which it

follows that /3 = — | a. If only
gj

is different from

du
zero, let p 3 1

= —
77 gj\ W which a is determined. We

then obtain for the complete stress tensor,

( 18 ) p„ = p5 „

[" /du* du, \ 2 /du\

'[yd*, dxj 3 \dxi

The heuristic value of the theory of invariants, which

arises from the isotropy of space (equivalence of all direc-

tions), becomes evident from this example.

We consider, finally, Maxwell’s equations in the form

which are the foundation of the electron theory of Lorentz.

[21 ]
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PRE-RELATIVITY PHYSICS
dh 3 d/i 3 1 de

x
,

1 .

dx2 dx 3 c dt
H h

c

dhi dh 3 1 de 2 .
i

.

dx3 dx x c dt

de\
+

de2 +
de 3

dx\ dx 2 dx 3

= p

de3 de2 1 dh\

dx 3 dx 3 c ~di

de x de 3 1 dh 2

dx 3 dx x c ~dt

dh x +
dh 2 +

dh 3

dxi dx2 dx 3

= 0

i is a vector, because the current density is defined as

the density of electricity multiplied by the vector velocity

of the electricity. According to the first three equations

it is evident that e is also to be regarded as a vector. Then
h cannot be regarded as a vector. * The equations may,
however, easily be interpreted if h is regarded as a skew-

symmetrical tensor of the second rank. Accordingly, we
write h 23 ,

h3U hu ,
in place of hu h 2 ,

h 3 respectively. Paying
attention to the skew-symmetry of h„„ the first three equa-
tions of (19) and (20) may be written in the form

(19a)

(20a)

dh^, _ 1 de„ 1 .

dx, c dt c
l “

dfV _ _ I 1
dx, dx„ c dt

* These considerations will make the reader familiar with tensor opera-
tions without the special difficulties of the four-dimensional treatment;
corresponding considerations in the theory of special relativity (Minkowski’s
interpretation of the field) will then offer fewer difficulties.

[ 22 ]
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In contrast to e, h appears as a quantity which has the

same type of symmetry as an angular velocity. The

divergence equations then take the form

(19b)

(20b)

be,

dx,
^

dh„, bh,„ bh pll =
bx„ bx„ dx.

The last equation is a skew-symmetrical tensor equation

of the third rank (the skew-symmetry of the left-hand

side with respect to every pair of indices may easily be

proved, if attention is paid to the skew-symmetry of h„,).

This notation is more natural than the usual one, because,

in contrast to the latter, it is applicable to Cartesian left-

handed systems as well as to right-handed systems without

change of sign.

[ 23 ]



THE THEORY
OF SPECIAL RELATIVITY

'T’HE previous considerations concerning the configura-
tion of rigid bodies have been founded, irrespective

of the assumption as to the validity of the Euclidean
geometry, upon the hypothesis that all directions in space,
or all configurations of Cartesian systems of co-ordinates,

are physically equivalent. We may express this as the
“principle of relativity with respect to direction,” and it

has been shown how equations (laws of nature) may be
found, in accord with this principle, by the aid of the
calculus of tensors. We now inquire whether there is a
relativity with respect to the state of motion of the space
of reference; in other words, whether there are spaces of
reference in motion relatively to each other which are
physically equivalent. From the standpoint of mechanics
it appears that equivalent spaces of reference do exist.

For experiments upon the earth tell us nothing of the
fact that we are moving about the sun with a velocity of
approximately 30 kilometres a second. On the other
hand, this physical equivalence does not seem to hold for

spaces of reference in arbitrary motion; for mechanical
effects do not seem to be subject to the same laws in a
jolting railway train as in one moving with uniform velocity;

the rotation of the earth must be considered in writing
down the equations of motion relatively to the earth. It

appears, therefore, as if there were Cartesian systems of
co-ordinates, the so-called inertial systems, with reference

[ 24 ]
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to which the laws of mechanics (more generally the laws

of physics) are expressed in the simplest form. We may

surmise the validity of the following proposition: If K is an

inertial system, then every other system K' which moves

uniformly and without rotation relatively to K, is also an

inertial system; the laws of nature are in concordance for

all inertial systems. This statement we shall call the

“principle of special relativity.” We shall draw certain

conclusions from this principle of “relativity of translation”

just as we have already done for relativity of direction.

In order to be able to do this, we must first solve the

following problem. If we are given the Cartesian co-ordi-

nates, x„ and the time t, of an event relatively to one inertial

system, K, how can we calculate the co-ordinates,

and the time, of the same event relatively to an inertial

system K' which moves with uniform translation relatively

to K? In the pre-relativity physics this problem was solved

by making unconsciously two hypotheses:

—

1. Time is absolute; the time of an event, relatively

to K' is the same as the time relatively to K. If instanta-

neous signals could be sent to a distance, and if one knew
that the state of motion of a clock had no influence on its

rate, then this assumption would be physically validated.

For then clocks, similar to one another, and regulated

alike, could be distributed over the systems K and K'
,
at

rest relatively to them, and their indications would be

independent of the state of motion of the systems; the time

of an event would then be given by the clock in its immedi-

ate neighbourhood.

2. Length is absolute; if an interval, at rest relatively

to K, has a length s, then it has the same length s,

relatively to a system K' which is in motion relatively

to K.

[ 25 ]
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If the axes of K and K' are parallel to each other, a

simple calculation based on these two assumptions, gives

the equations of transformation

(21 )

— b,t

This transformation is known as the “Galilean Trans-

formation.” Differentiating twice by the time, we get

d2
x'

, _ d2x,

~dF
=

Hi 2
'

Further, it follows that for two simultaneous events,

/(li _ x >'(2) — X>(1) _ Xf (2)_

The invariance of the distance between the two points

results from squaring and adding. From this easily

follows the co-variance of Newton’s equations of motion

with respect to the Galilean transformation (21). Hence

it follows that classical mechanics is in accord with the

principle of special relativity if the two hypotheses respect-

ing scales and clocks are made.

But this attempt to found relativity of translation upon

the Galilean transformation fails when applied to electro-

magnetic phenomena. The Maxwell-Lorentz electro-

magnetic equations are not co-variant with respect to the

Galilean transformation. In particular, we note, by (21),

that a ray of light which referred to K has a velocity c,

has a different velocity referred to K'
,
depending upon

its direction. The space of reference of K is therefore

distinguished, with respect to its physical properties, from

all spaces of reference which are in motion relatively to it

(quiescent ether). But all experiments have shown that

electro-magnetic and optical phenomena, relatively to the

[ 26 ]
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earth as the body of reference, are not influenced by the

translational velocity of the earth. The most important

of these experiments are those of Michelson and Morley,

which I shall assume are known. The validity of the

principle of special relativity also with respect to electro-

magnetic phenomena can therefore hardly be doubted.

On the other hand, the Maxwell-Lorentz equations

have proved their validity in the treatment of optical

problems in moving bodies. No other theory has satis-

factorily explained the facts of aberration, the propagation

of light in moving bodies (Fizeau), and phenomena

observed in double stars (De Sitter). The consequence of

the Maxwell-Lorentz equations that in a vacuum light is

propagated with the velocity c, at least with respect to a

definite inertial system K, must therefore be regarded as

proved. According to the principle of special relativity,

we must also assume the truth of this principle for every

other inertial system.

Before we draw any conclusions from these two principles

we must first review the physical significance of the con-

cepts “time” and “velocity.” It follows from what has

gone before, that co-ordinates with respect to an inertial

system are physically defined by means of measurements

and constructions with the aid of rigid bodies. In order

to measure time, we have supposed a clock, U, present

somewhere, at rest relatively to A . But we cannot fix the

time, by means of this clock, of an event whose distance

from the clock is not negligible; for there are no “instan-

taneous signals” that we can use in order to compare the

time of the event with that of the clock. In order to com-

plete the definition of time we may employ the principle

of the constancy of the velocity of light in a vacuum. Let

us suppose that we place similar clocks at points of the

[
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system K, at rest relatively to it, and regulated according to

the following scheme. A ray of light is sent out from one of

the clocks, Um ,
at the instant when it indicates the time tm ,

and travels through a vacuum a distance r„m ,
to the clock

Un \
at the instant when this ray meets the clock Un the latter

is set to indicate the time tn = tm + ’-y.* The principle of

the constancy of the velocity of light then states that this

adjustment of the clocks will not lead to contradictions.

With clocks so adjusted, we can assign the time to events
which take place near any one of them. It is essential to

note that this definition of time relates only to the inertial

system K, since we have used a system of clocks at rest

relatively to K. The assumption which was made in the

pre-relativity physics of the absolute character of time
(i.e. the independence of time of the choice of the inertial

system) does not follow at all from this definition.

The theory of relativity is often criticized for giving,

without justification, a central theoretical role to the

propagation of light, in that it founds the concept of time
upon the law of propagation of light. The situation,

however, is somewhat as follows. In order to give physical

significance to the concept of time, processes of some kind
are required which enable relations to be established

between different places. It is immaterial what kind of

processes one chooses for such a definition of time. It is

advantageous, however, for the theory, to choose only

those processes concerning which we know something

* Strictly speaking, it would be more correct to define simultaneity first,

somewhat as follows: two events taking place at the points A and B of
the system K are simultaneous if they appear at the same instant when
observed from the middle point, M, of the interval AB. Time is then
defined as the ensemble of the indications of similar clocks, at rest relatively
to K, which register the same time simultaneously.

[ 28
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certain. This holds for the propagation of light in vacuo

in a higher degree than for any other process which could

be considered, thanks to the investigations of Maxwell and

H. A. Lorentz.

From all of these considerations, space and time data

have a physically real, and not a mere fictitious, signifi-

cance; in particular this holds for all the relations in

which co-ordinates and time enter, e.g. the relations (21).

There is, therefore, sense in asking whether those equations

are true or not, as well as in asking what the true equations

of transformation are by which we pass from one inertial

system K to another, K '
,
moving relatively to it. It may

be shown that this is uniquely settled by means of the

principle of the constancy of the velocity of light and the

principle of special relativity.

To this end we think of space and time physically defined

with respect to two inertial systems, K and K', in the way

that has been shown. Further, let a ray of light pass from

one point Pi to another point P2 of K through a vacuum.

If r is the measured distance between the two points, then

the propagation of light must satisfy the equation

r = c . Ah

If we square this equation, and express r
2 by the differ-

ences of the co-ordinates, Ax„ in place of this equation we

can write

(22 ) 2 (Ax,) 2 - c
2At2 = 0

This equation formulates the principle of the constancy

of the velocity of light relatively to A". It must hold what-

ever may be the motion of the source which emits the ray

of light.

[ 29 ]
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The same propagation of light may also be considered

relatively to K'

,

in which case also the principle of the

constancy of the velocity of light must be satisfied. There-

fore, with respect to K', we have the equation

(22a) % (Ax',) 2 - c
2A;' 2 = 0

Equations (22a) and (22) must be mutually consistent

with each other with respect to the transformation which

transforms from A' to AT'. A transformation which effects

this we shall call a “Lorentz transformation.”

Before considering these transformations in detail we
shall make a few general remarks about space and time.

In the pre-relativity physics space and time were sepa-

rate entities. Specifications of time were independent of

the choice of the space of reference. The Newtonian

mechanics was relative with respect to the space of refer-

ence, so that, e.g. the statement that two non-simultaneous

events happened at the same place had no objective mean-

ing (that is, independent of the space of reference). But

this relativity had no role in building up the theory. One
spoke of points of space, as of instants of time, as if they

were absolute realities. It was not observed that the true

element of the space-time specification was the event

specified by the four numbers x u x 2 ,
x 3 ,

t. The conception

of something happening was always that of a four-dimen-

sional continuum; but the recognition of this was obscured

by the absolute character of the pre-relativity time. Upon
giving up the hypothesis of the absolute character of time,

particularly that of simultaneity, the four-dimensionality of

the time-space concept was immediately recognized. It is

neither the point in space, nor the instant in time, at which

something happens that has physical reality, but only the

event itself. There is no absolute (independent of the space

[30]
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of reference) relation in space, and no absolute relation in

time between two events, but there is an absolute (inde-

pendent of the space of reference) relation in space and

time, as will appear in the sequel. The circumstance that

there is no objective rational division of the four-dimen-

sional continuum into a three-dimensional space and a

one-dimensional time continuum indicates that the laws

of nature will assume a form which is logically most satis-

factory when expressed as laws in the four-dimensional

space-time continuum. Upon this depends the great

advance in method which the theory of relativity owes to

Minkowski. Considered from this standpoint, we must

regard xu x 2 , x 3 ,
t as the four co-ordinates of an event in

the four-dimensional continuum. We have far less success

in picturing to ourselves relations in this four-dimensional

continuum than in the three-dimensional Euclidean con-

tinuum; but it must be emphasized that even in the Euclid-

ean three-dimensional geometry its concepts and relations

are only of an abstract nature in our minds, and are not at

all identical with the images we form visually and through

our sense of touch. The non-divisibility of the four-dimen-

sional continuum of events does not at all, however, involve

the equivalence of the space co-ordinates with the time

co-ordinate. On the contrary, we must remember that

the time co-ordinate is defined physically wholly differently

from the space co-ordinates. The relations (22) and (22a)

which when equated define the Lorentz transformation

show, further, a difference in the role of the time co-ordinate

from that of the space co-ordinates; for the term A t
2 has

the opposite sign to the space terms, A*i 2
,
Ajt2

2
,
Ax 3

2
.

Before we analyse further the conditions which define

the Lorentz transformation, we shall introduce the light-

time, / = ct, in place of the time, t, in order that the con-
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stant c shall not enter explicitly into the formulas to be
developed later. Then the Lorentz transformation is

defined in such a way that, first, it makes the equation

(22b) Ax,* + Ax 2
2 + Ax 3

* - A/
2 = 0

a co-variant equation, that is, an equation which is satisfied

with respect to every inertial system if it is satisfied in

the inertial system to which we refer the two given events

(emission and reception of the ray of light). Finally,

with Minkowski, we introduce in place of the real time

co-ordinate l = ct, the imaginary time co-ordinate

x 4 = il = id (V — 1 = i).

Then the equation defining the propagation of light,

which must be co-variant with respect to the Lorentz
transformation, becomes

(22c) X A*'
2 = A*i

2 + ax2
2 + Ax 3

2 + Ax 4
2 = 0

(4 )

This condition is always satisfied* if we satisfy the more
general condition that

(23) j
2 = Ax ,

2 + Ax 2
2 + Ax3

2 + Ax 4
2

shall be an invariant with respect to the transformation.

This condition is satisfied only by linear transformations,

that is, transformations of the type

(24) x'„ = + b„axa

in which the summation over the a is to be extended
from a = 1 to a = 4. A glance at equations (23) (24)

shows that the Lorentz transformation so defined is identical

* That this specialization lies in the nature of the case will be evident
later.
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with the translational and rotational transformations of the

Euclidean geometry, if we disregard the number of dimen-

sions and the relations of reality. We can also conclude

that the coefficients must satisfy the conditions

(25)

Since the ratios of the x, are real, it follows that all the

a„ and the b^a are real, except a 4 ,
b 4] , bn, bn, bu, bn, and

bn, which are purely imaginary.

Special Lorentz Transformation. We obtain the simplest

transformations of the type of (24) and (25) if only two of

the co-ordinates are to be transformed, and if all the

which merely determine the new origin, vanish. We obtain

then for the indices 1 and 2, on account of the three inde-

pendent conditions which the relations (25) furnish,

x'i = cos (j> — sin <p

x\ = xi sin <j> + Xi cos <£

x' 3 = x3

x\ = x 4

(26)

This is a simple rotation in space of the (space) co-ordi-

nate system about the v 3-axis. We see that the rotational

transformation in space (without the time transformation)

which we studied before is contained in the Lorentz trans-

formation as a special case. For the indices 1 and 4 we

obtain, in an analogous manner,

' x\ = a'i cos — Xi sin \p

x\ = x i sin \p + Xi cos \p

x\ = * 2

x\ = * 3

(26a)

On account of the relations of reality \p must be taken

as imaginary. To interpret these equations physically,
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we introduce the real light-time / and the velocity v of

K' relatively to K, instead of the imaginary angle ip. We
have, first,

x\ — ati cos \p — il sin \p

l' = —ix i sin \p -f- / cos \p.

Since for the origin of K'

,

i.e., for x\ = 0, we must have

xi = vl, it follows from the first of these equations that

(27) v = i tan \p

and also

(28)

so that we obtain

(29)

sin
\f/
=

cos ^ =

— iv

\

Vi -

X 1

*1 — vl

Vf^T2

,r = 1~J^L
Vl - y

2

x
'

2 =
= x 3

These equations form the well-known special Lorentz

transformation, which in the general theory represents a

rotation, through an imaginary angle, of the four-dimen-

sional system of co-ordinates. If we introduce the ordinary

time t, in place of the light-time /, then in (29) we must
v

replace l by ct and v by

We must now fill in a gap. From the principle of the

constancy of the velocity of light it follows that the equation

2 A*, 2 = 0
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has a significance which is independent of the choice of

the inertial system; but the invariance of the quantity

£ Ax, 2 does not at all follow from this. This quantity

might be transformed with a factor. This depends upon

the fact that the right-hand side of (29) might be multi-

plied by a factor X, which may depend on v. But the princi-

ple of relativity does not permit this factor to be different

from 1 ,
as we shall now show. Let us assume that we have

a rigid circular cylinder moving in the direction of its

axis. If its radius, measured at rest with a unit measur-

ing rod is equal to R0 ,
its radius R in motion, might be

different from R 0,
since the theory of relativity does not

make the assumption that the shape of bodies with respect

to a space of reference is independent of their motion

relatively to this space of reference. But all directions

in space must be equivalent to each other. R may there-

fore depend upon the magnitude q of the velocity, but

not upon its direction; R must therefore be an even function

of q. If the cylinder is at rest relatively to K' the equation

of its lateral surface is

*' 2 +/ 2 = * o
*.

If we write the last two equations of (29) more generally

x't = Xx2

x'i = \x3

then the lateral surface of the cylinder referred to K satisfies

the equation

+y = tt

The factor X therefore measures the lateral contraction of
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the cylinder, and can thus, from the above, be only an
even function of v.

If we introduce a third system of co-ordinates, K",

which moves relatively to K' with velocity v in the direc-

tion of the negative x-axis of K, we obtain, by apply-

ing (29) twice,

x'\ = X(y)X( — v)xi

l" = X(®)X(-i»)/.

Now, since \(v) must be equal to X(— ?/), and since we
assume that we use the same measuring rods in all the

systems, it follows that the transformation of K" to K
must be the identical transformation (since the possibility

X = — 1 does not need to be considered). It is essential

for these considerations to assume that the behaviour of

the measuring rods does not depend upon the history of

their previous motion.

Moving Measuring Rods and Clocks. At the definite K
time, / = 0, the position of the points given by the integers

x\ = n, is with respect to K, given by x x = n Vl — v 2
;

this follows from the first of equations (29) and expresses

the Lorentz contraction. A clock at rest at the origin

= 0 of K, whose beats are characterized by / = n, will,

when observed from K'

,

have beats characterized by

/' = "
•

Vi - V
this follows from the second of equations (29) and shows that

the clock goes slower than if it were at rest relatively to K'

.

These two consequences, which hold, mutatis mutandis, for

[
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every system of reference, form the physical content, free

from convention, of the Lorentz transformation.

Addition Theorem for Velocities. If we combine two special

Lorentz transformations with the relative velocities y, and
v2 ,

then the velocity of the single Lorentz transformation

which takes the place of the two separate ones is, according

to (27), given by

(30) vu = i tan (ipi +

^

2 )

tan
\J/ X -(- tan _ v x + v2

1 — tan^i tan 1^2
~ 1 -h z>iy 2

General Statements about the Lorentz Transformation and its

Theory of Invariants. The whole theory of invariants of the

special theory of relativity depends upon the invariant s
2

(23). Formally, it has the same role in the four-dimensional

space-time continuum as the invariant Ax, 2 + Ax 2
2 + Ax 3

2

in the Euclidean geometry and in the pre-relativity physics.

The latter quantity is not an invariant with respect to all

the Lorentz transformations; the quantity s
2 of equation

(23) assumes the role of this invariant. With respect to an

arbitrary inertial system, s
1 may be determined by measure-

ments; with a given unit of measure it is a completely

determinate quantity, associated with an arbitrary pair of

events.

The invariant s
2 differs, disregarding the number of

dimensions, from the corresponding invariant of the

Euclidean geometry in the following points. In the

Euclidean geometry j
2

is necessarily positive; it vanishes

only when the two points concerned come together. On
the other hand, from the vanishing of

s
2 = X Ax, 2 = Ax, 2 + Ax 2

2 + Ax 3
2 - At 2

it cannot be concluded that the two space-time points
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fall together; the vanishing of this quantity j
2

,
is the invari-

ant condition that the two space-time points can be con-

nected by a light signal in vacuo. If P is a point (event)

represented in the four-dimensional space of the x t , x 2 ,
x 3 , /,

then all the “points” which can be connected to P by means
of a light signal lie upon the cone r

2 = 0 (compare Fig. 1,

in which the dimension x3 is suppressed). The “upper”

Fio. 1.

half of the cone may contain the “points” to which light

signals can be sent from P; then the “lower” half of the

cone will contain the “points” from which light signals can

be sent to P. The points P' enclosed by the conical surface

furnish, with P, a negative r
2

;
PP'

,

as well as P'P is then,

according to Minkowski, time-like. Such intervals repre-
sent elements of possible paths of motion, the velocity

being less than that of light.* In this case the /-axis

* That material velocities exceeding that of light are not possible, follows

from the appearance of the radical V 1 — rJ in the special Lorentz trans-

formation (29).
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may be drawn in the direction of PP' by suitably choosing

the state of motion of the inertial system. If P' lies out-

side of the “light-cone” then PP' is space-like; in this case,

by properly choosing the inertial system, Al can be made to

vanish.

By the introduction of the imaginary time variable,

xt = il, Minkowski has made the theory of invariants for

the four-dimensional continuum of physical phenomena

fully analogous to the theory of invariants for the three-

dimensional continuum of Euclidean space. The theory of

four-dimensional tensors of special relativity differs from the

theory of tensors in three-dimensional space, therefore, only

in the number of dimensions and the relations of reality.

A physical entity which is specified by four quantities,

A„ in an arbitrary inertial system of the xi, x 2 ,
x 3 , *4, is

called a 4-vector, with the components A,, if the A, cor-

respond in their relations of reality and the properties

of transformation to the Ax,; it may be space-like or time-

like. The sixteen quantities A„, then form the compo-

nents of a tensor of the second rank, if they transform

according to the scheme

It follows from this that the A„, behave, with respect to

their properties of transformation and their properties

of reality, as the products of the components, Um V„ of two

4-vectors, (U) and (K). All the components are real except

those which contain the index 4 once, those being purely

imaginary. Tensors of the third and higher ranks may be

defined in an analogous way. The operations of addition,

subtraction, multiplication, contraction and differentiation

for these tensors are wholly analogous to the corresponding

operations for tensors in three-dimensional space.
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Before we apply the tensor theory to the four-dimen-

sional space-time continuum, we shall examine more par-

ticularly the skew-symmetrical tensors. The tensor of

the second rank has, in general, 16 = 4.4 components.
In the case of skew-symmetry the components with two
equal indices vanish, and the components with unequal
indices are equal and opposite in pairs. There exist,

therefore, only six independent components, as is the

case in the electromagnetic field. In fact, it will be shown
when we consider Maxwell’s equations that these may
be looked upon as tensor equations, provided we regard

the electromagnetic field as a skew-symmetrical tensor.

Further, it is clear that a skew-symmetrical tensor of

the third rank (skew-symmetrical in all pairs of indices)

has only four independent components, since there are

only four combinations of three different indices.

We now turn to Maxwell’s equations (19a), (19b), (20a),

(20b), and introduce the notation:*

0 31 0 12 0 14 021 031

hs i h\i —ie, — ie v — i e,

[
h Ji Ja Ji
1 1 1

\c lz
c
lv

c
u ip

with the convention that 0„, shall be equal to — 0,,.

Then Maxwell’s equations may be combined into the forms

d0,. = ?
dx, J *

^ _ n
dx, dx„ dx,

* In order to avoid confusion from now on we shall use the three-dimen-
sional space indices, x,y, z instead of 1 , 2, 3, and we shall reserve the numeral
indices 1, 2, 3, 4 for the four-dimensional space-time continuum.

[ 40 ]
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as one can easily verify by substituting from (30a) and

(31). Equations (32) and (33) have a tensor character,

and are therefore co-variant with respect to Lorentz

transformations, if the <t>„, and the J„ have a tensor character,

which we assume. Consequently, the laws for transforming

these quantities from one to another allowable (inertial)

system of co-ordinates are uniquely determined. The

progress in method which electro-dynamics owes to the

theory of special relativity lies principally in this, that

the number of independent hypotheses is diminished. If

we consider, for example, equations (19a) only from the

standpoint of relativity of direction, as we have done above,

we see that they have three logically independent terms.

The way in which the electric intensity enters these equa-

tions appears to be wholly independent of the way in which

the magnetic intensity enters them; it would not be sur-

de„ d 2r„
.

prising if instead of we had, say, or if this term were

absent. On the other hand, only two independent terms

appear in equation (32). The electromagnetic field

appears as a formal unit; the way in which the electric field

enters this equation is determined by the way in which the

magnetic field enters it. Besides the electromagnetic

field, only the electric current density appears as an inde-

pendent entity. This advance in method arises from

the fact that the electric and magnetic fields lose their

separate existences through the relativity of motion. A field

which appears to be purely an electric field, judged from

one system, has also magnetic field components when

judged from another inertial system. When applied to

an electromagnetic field, the general law of transformation

furnishes, for the special case of the special Lorentz trans-

formation, the equations

[41 ]
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= e z h'x — hz

vh z r
h
v v€z

vT -T2 hv Vl- v*

P. - -4- 7)h. /> — 7)t>

(34)

If there exists with respect to K only a magnetic field,

h, but no electric field, e, then with respect to K' there

exists an electric field e' as well, which would act upon
an electric particle at rest relatively to A''. An observer

at rest relatively to K would designate this force as the

Biot-Savart force, or the Lorentz electromotive force. It

therefore appears as if this electromotive force had become
fused with the electric field intensity into a single entity.

In order to view this relation formally, let us consider

the expression for the force acting upon unit volume of

electricity,

(35) k = pe +i X h

in which i is the vector velocity of electricity, with the

velocity of light as the unit. If we introduce J„ and
according to (30a) and (31), we obtain for the first com-
ponent the expression

Observing that </> n vanishes on account of the skew-
symmetry of the tensor (</>), the components of k are given
by the first three components of the four-dimensional

vector

(36) A* —

and the fourth component is given by

(37) Ki = + (frizjs = i(ex l x + e yi y +

[
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There is, therefore, a four-dimensional vector of force per

unit volume, whose first three components, k i, k 2 ,
k 3 ,

arc

the ponderomotive force components per unit volume, and

whose fourth component is the rate of working of the field

per unit volume, multiplied by V — 1.

A comparison of (36) and (35) shows that the theory

of relativity formally unites the ponderomotive force of

the electric field, pc, and the Biot-Savart or Lorentz force

i X h.

Mass and Energy. An important conclusion can be

drawn from the existence and significance of the 4-vector

K„. Let us imagine a body upon which the electro-

magnetic field acts for a time. In the symbolic figure

(Fig. 2) Ox, designates the *i-axis, and is at the same

time a substitute for the three space axes 0x x ,
0x 2 ,

0x 3 \

01 designates the real time axis. In this diagram a body

of finite extent is represented, at a definite time /, by the

interval AB; the whole space-time existence of the body

is represented by a strip whose boundary is everywhere

[
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inclined less than 45 to the /-axis. Between the time
sections, / = l\ and / = / 2 ,

but not extending to them,
a portion of the strip is shaded. This represents the
portion of the space-time manifold in which the electro-
magnetic field acts upon the body, or upon the electric
charges contained in it, the action upon them being
transmitted to the body. We shall now consider the
changes which take place in the momentum and energy
of the body as a result of this action.

We shall assume that the principles of momentum
and energy are valid for the body. The change in momen-
tum, AIX ,

AIV ,
A

I

z ,
and the change in energy, AE, are then

given by the expressions

= dl
J

kzdxdydz =
- J Kidxidx3dx 3dxi

~ ĵ
dl

J
Xdxdydz =

j J j
Kidx\dx 1dx 3dx i

Since the four-dimensional element of volume is an invari-

ant, and (Kt , /f2 ,
K3 , Kd) forms a 4-vector, the four-dimen-

sional integral extended over the shaded portion transforms
as a 4-vector, as does also the integral between the limits E
and / 2 ,

because the portion of the region which is not
shaded contributes nothing to the integral. It follows,

therefore, that AIZ ,
A /„, AIZ ,

iAE form a 4-vector. Since
the quantities themselves may be presumed to transform in

the same way as their increments, we infer that the aggre-

gate of the four quantities

fp

has itself vector character; these quantities are referred

[44]
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to an instantaneous condition of the body (e.g. at the time

l = h).

This 4-vector may also be expressed in terms of the

mass m, and the velocity of the body, considered as a

material particle. To form this expression, we note first,

that

(38) — ds2 = dr 2 = — (dxy 2 + dx2
2 + dxz

2
)
— dx 4

2

- dl\ 1 - q
2
)

is an invariant which refers to an infinitely short portion

of the four-dimensional line which represents the motion

of the material particle. The physical significance of the

invariant dr may easily be given. If the time axis is chosen

in such a way that it has the direction of the line differential

which we are considering, or, in other terms, if we transform

the material particle to rest, we shall have dr = dl; this

will therefore be measured by the light-seconds clock

which is at the same place, and at rest relatively to the

material particle. We therefore call r the proper time of

the material particle. As opposed to dl, dr is therefore an

invariant, and is practically equivalent to dl for motions

whose velocity is small compared to that of light. Hence
we see that

(39) K,
dx,

dr

has, just as the dx„ the character of a vector; we shall

designate (u,) as the four-dimensional vector (in brief,

4-vector) of velocity. Its components satisfy, by (38),

the condition

(40) £h, 2 =-1.

We see that this 4-vector, whose components in the ordinary

notation are

[
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(41 )
% q* i

VI — q
1 Vl — q

2 Vl — q
2

’

Vl — q
2

is the only 4-vector which can be formed from the velocity

components of the material particle which are defined in

three dimensions by

%
dz

dl

We therefore see that

<42
> (-&)

must be that 4-vector which is to be equated to the 4-vector

of momentum and energy whose existence we have proved
above. By equating the components, we obtain, in three-

dimensional notation,

(43)

m<h

Vl - q
2

We recognize, in fact, that these components of momen-
tum agree with those of classical mechanics for velocities

which are small compared to that of light. For large veloc-

ities the momentum increases more rapidly than linearly

with the velocity, so as to become infinite on approaching
the velocity of light.

If we apply the last of equations (43) to a material

particle at rest
(

q

= 0), we see that the energy, E0,
of a

body at rest is equal to its mass. Had we chosen the

second as our unit of time, we would have obtained

(44 ) Eo = me 2
.
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Mass and energy are therefore essentially alike; they are

only different expressions for the same thing. The mass

of a body is not a constant; it varies with changes in its

energy.* We see from the last of equations (43) that E
becomes infinite when q approaches 1, the velocity of light.

If we develop E in powers of q
2
,
we obtain,

(45)

The second term of this expansion corresponds to the

kinetic energy of the material particle in classical mechanics.

Equations of Motion of Material Particles. From (43)

we obtain, by differentiating by the time /, and using

the principle of momentum, in the notation of three-

dimensional vectors,

(46)

This equation, which was previously employed by H. A.

Lorentz for the motion of electrons, has been proved to be

true, with great accuracy, by experiments with /3-rays.

Energy Tensor of the Electromagnetic Field. Before the

development of the theory of relativity it was known that

the principles of energy and momentum could be expressed

in a differential form for the electromagnetic field. The

four-dimensional formulation of these principles leads to

an important conception, that of the energy tensor, which

is important for the further development of the theory of

relativity.

* The emission of energy in radioactive processes is evidently connected

with the fact that the atomic weights are not integers. The equivalence

between mass at rest and energy at rest which is expressed in equation (44)

has been confirmed in many cases during recent years. In radio-active

decomposition the sum of the resulting masses is always less than the mass of

the decomposing atom. The difference appears in the form of kinetic energy

of the generated particles as well as in the form of released radiational energy.
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If in the expression for the 4-vector of force per unit

volume,

K„ =

using the field equations (32), we express in terms of

the field intensities, <+>„,, we obtain, after some transforma-

tions and repeated application of the field equations (32)

and (33), the expression

<47 > K--~ a

-k
where we have written*

(48) T„. = — i<^>„8
25w , -f <£„<,</>,,«

The physical meaning of equation (47) becomes evident

if in place of this equation we write, using a new notation,

I

, = _ dPXX _ dt _ tyxz _ d(ibx)
1 dx by dz b(il)

;;;;;;;
_ d(isz ) _ b(isv) _ b(isz) _ b( t?)

1

dx by dz b(il)

or, on eliminating the imaginary,

(47b)

dpxx _ dpiy _ dpi!

dx by dz

dsx dsy ds2 dr)

dx by dz dl

dl/j.

dl

When expressed in the latter form, we see that the

first three equations state the principle of momentum;

pzz . .
. pzz are the Maxwell stresses in the electro-magnetic

* To be summed for the indices a and rf.
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field, and (bx ,
bv ,

bz) is the vector momentum per unit

volume of the field. The last of equations (47b) expresses

the energy principle; s is the vector flow of energy, and i)

the energy per unit volume of the field. In fact, we get

from (48) by introducing the real components of the field

intensity the following expressions well known from

electrodynamics

:

I

Pxx = ~hxhx + \{h 2 + V + h 2
)

—exex + i(ex
2 + ev

2 + ez
2
)

Pxy P-xby Vx^y

pxz hxhz

;

bx £yhz czhy

r
i
= +U‘x2 + e

2 + + h 2 + h 2 + h 2
)

We notice from (48) that the energy tensor of the electro-

magnetic field is symmetrical; with this is connected

the fact that the momentum per unit volume and the

flow of energy are equal to each other (relation between

energy and inertia).

We therefore conclude from these considerations that

the energy per unit volume has the character of a tensor.

This has been proved directly only for an electromagnetic

field, although we may claim universal validity for it.

Maxwell’s equations determine the electromagnetic field

when the distribution of electric charges and currents is

known. But we do not know the laws which govern the

currents and charges. We do know, indeed, that electricity

consists of elementary particles (electrons, positive nuclei),

but from a theoretical point of view we cannot comprehend

this. We do not know the energy factors which determine

[
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the distribution of electricity in particles of definite size

and charge, and all attempts to complete the theory in this

direction have failed. If then we can build upon Maxwell’s

equations at all, the energy tensor of the electromag-

netic field is known only outside the charged particles.*

In these regions, outside of charged particles, the only

regions in which we can believe that we have the complete

expression for the energy tensor, we have, by (47),

(47c) = 0.

General Expressions for the Conservation Principles. We
can hardly avoid making the assumption that in all other

cases, also, the space distribution of energy is given by a

symmetrical tensor, T„„ and that this complete energy

tensor everywhere satisfies the relation (47c). At any

rate we shall see that by means of this assumption we obtain

the correct expression for the integral energy principle.

Let us consider a spatially bounded, closed system,

which, four-dimensionally, we may represent as a strip,

outside of which the T„, vanish. Integrate equation

(47c) over a space section. Since the integrals of

dT^ dT„ 2
dr„ 3 _ ,

a— >
-
5
—

- and -
5
—s vanish because the Tu , vanish at the

UACi OX 2 OX$

limits of integration, we obtain

(49)
Wi

{ /
T^dx^x

\
= 0

Inside the parentheses are the expressions for the momen-

* It has been attempted to remedy this lack of knowledge by considering

the charged particles as proper singularities. But in my opinion this means
giving up a real understanding of the structure of matter. It seems to me
much better to admit our present inability rather than to be satisfied by a

solution that is only apparent.
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turn of the whole system, multiplied by i, together with

the negative energy of the system, so that (49) expresses

the conservation principles in their integral form. That
this gives the right conception of energy and the conserva-

tion principles will be seen from the following considerations.

Phenomenological Representation of the
Energy Tensor of Matter

Hydrodynamical Equations. We know that matter is

built up of electrically charged particles, but we do not

know the laws which govern the constitution of these

particles. In treating mechanical problems, we are there-

fore obliged to make use of an inexact description of matter,

which corresponds to that of classical mechanics. The
density <r, of a material substance and the hydrodynamical

pressures are the fundamental concepts upon which such a

description is based.

Let (To be the density of matter at a place, estimated

with reference to a system of co-ordinates moving with

the matter. Then a0,
the density at rest, is an invariant.

[
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If we think of the matter in arbitrary motion and neglect

the pressures (particles of dust in vacuo, neglecting the

size of the particles and the temperature), then the energy
tensor will depend only upon the velocity components,
u, and a 0 - We secure the tensor character of Th , by putting

(50) = <r0uuu,

in which the i/„, in the three-dimensional representation,

are given by (41). In fact, it follows from (50) that for

q
= 0, T44 — —

o-Q (equal to the negative energy per unit

volume), as it should, according to the principle of the

equivalence of mass and energy, and according to the

physical interpretation of the energy tensor given above.

If an external force (four-dimensional vector, A„) acts

upon the matter, by the principles of momentum and energy

the equation

must hold. We shall now show that this equation leads

to the same law of motion of a material particle as that

already obtained. Let us imagine the matter to be of

infinitely small extent in space, that is, a four-dimensional

thread; then by integration over the whole thread with

respect to the space co-ordinates x u ,v 2 ,
x 3 ,

we obtain

- dx\dx3dx3 =

Now
J

dxidx 2dx3dxt is an invariant, as is, therefore,

also
J

(Todxidxidxzdxi. We shall calculate this integral, first

with respect to the inertial system which we have chosen,
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and second, with respect to a system relatively to which

the matter has the velocity zero. The integration is to

be extended over a filament of the thread for which <r 0

may be regarded as constant over the whole section. If

the space volumes of the filament referred to the two

systems are dV and dV0 respectively, then we have

j crodVdl — f (TodVodr

and therefore also

If we substitute the right-hand side for the left-hand

dx\
side in the former integral, and put outside the sign

of integration, we obtain,

We see, therefore, that the generalized conception of the

energy tensor is in agreement with our former result.

The Eulerian Equations for Perfect Fluids. In order to

get nearer to the behaviour of real matter we must add

to the energy tensor a term which corresponds to the

pressures. The simplest case is that of a perfect fluid in

which the pressure is determined by a scalar p. Since

the tangential stresses pzv ,
etc., vanish in this case, the

contribution to the energy tensor must be of the form

p5,„. We must therefore put

(51) T„, = au„u. +

At rest, the density of the matter, or the energy per unit

volume, is in this case, not a but a — p. For
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_ dx t dx 4- 1 u - - V
-fo-fo

- Pb 44 = a — p.

In the absence of any force, we have

dT*’ _ du >
, „

d(«0
,

dP n
~d^

- <xu
’d7.

+u
*-^r + d7„-°-

If we multiply this equation by u„ (-&) and sum for

the /z’s we obtain, using (40).

(52)
dfr™,) ,

dp _ n
dx, dr

where we have put ^ This is the equation of

continuity, which differs from that of classical mechanics
dp

by the term which, practically, is vanishingly small.

Observing (52), the conservation principles take the form

,r-i\ du e ,

dP ,

dp
(53) + 57

”°-

The equations for the first three indices evidently corre-

spond to the Eulerian equations. That the equations

(52) and (53) correspond, to a first approximation, to the

hydrodynamical equations of classical mechanics, is a

further confirmation of the generalized energy principle.

The density of matter (or of energy) has tensor character

(specifically, it constitutes a symmetrical tensor).

[
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OF RELATIVITY

i,h of the previous considerations have been based

T*. upon the assumption that all inertial systems are

equivalent for the description of physical phenomena, but

that they are preferred, for the formulation of the laws

of nature, to spaces of reference in a different state of

motion. We can think of no cause for this preference

for definite states of motion to all others, according to

our previous considerations, either in the perceptible

bodies or in the concept of motion; on the contrary, it

must be regarded as an independent property of the

space-time continuum. The principle of inertia, in

particular, seems to compel us to ascribe physically objective

properties to the space-time continuum. Just as it was

consistent from the Newtonian standpoint to make both

the statements, tempus est absolutum, spatium est absolutum, so

from the standpoint of the special theory of relativity we

must say, continuum spatii et temporis est absolutum. In this

latter statement absolutum means not only “physically real,”

but also “independent in its physical properties, having

a physical effect, but not itself influenced by physical

conditions.”

As long as the principle of inertia is regarded as the

keystone of physics, this standpoint is certainly the only

one which is justified. But there are two serious criticisms

of the ordinary conception. In the first place, it is contrary
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to the mode of thinking in science to conceive of a thing

(the space-time continuum) which acts itself, but which
cannot be acted upon. This is the reason why E. Mach
was led to make the attempt to eliminate space as an
active cause in the system of mechanics. According to

him, a material particle does not move in unaccelerated

motion relatively to space, but relatively to the centre of

all the other masses in the universe; in this way the series

of causes of mechanical phenomena was closed, in contrast

to the mechanics of Newton and Galileo. In order to

develop this idea within the limits of the modern theory

of action through a medium, the properties of the space-

time continuum which determine inertia must be regarded
as field properties of space, analogous to the electromagnetic

field. The concepts of classical mechanics afford no way
of expressing this. For this reason Mach’s attempt at a

solution failed for the time being. We shall come back
to this point of view later. In the second place, classical

mechanics exhibits a deficiency which directly calls for

an extension of the principle of relativity to spaces of

reference which are not in uniform motion relatively to

each other. The ratio of the masses of two bodies is

defined in mechanics in two ways which differ from each
other fundamentally; in the first place, as the reciprocal

ratio of the accelerations which the same motive force

imparts to them (inert mass), and in the second place, as

the ratio of the forces which act upon them in the same
gravitational field (gravitational mass). The equality of

these two masses, so differently defined, is a fact which is

confirmed by experiments of very high accuracy (experi-

ments of Eotvos), and classical mechanics offers no explana-

tion for this equality. It is, however, clear that science is

fully justified in assigning such a numerical equality only
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after this numerical equality is reduced to an equality of

the real nature of the two concepts.

That this object may actually be attained by an exten-

sion of the principle of relativity, follows from the follow-

ing consideration. A little reflection will show that the

law of the equality of the inert and the gravitational

mass is equivalent to the assertion that the acceleration

imparted to a body by a gravitational field is independent

of the nature of the body. For Newton’s equation of

motion in a gravitational field, written out in full, is

(Inert mass) .
(Acceleration) = (Intensity of the

gravitational field) .
(Gravitational mass).

It is only when there is numerical equality between the

inert and gravitational mass that the acceleration is inde-

pendent of the nature of the body. Let now A be an

inertial system. Masses which are sufficiently far from

each other and from other bodies are then, with respect

to AT, free from acceleration. We shall also refer these

masses to a system of co-ordinates K '
,
uniformly acceler-

ated with respect to K. Relatively to K' all the masses

have equal and parallel accelerations; with respect to K'

they behave just as if a gravitational field were present and

K' were unaccelerated. Overlooking for the present the

question as to the “cause” of such a gravitational field,

which will occupy us later, there is nothing to prevent

our conceiving this gravitational field as real, that is, the

conception that K' is “at rest” and a gravitational field

is present we may consider as equivalent to the concep-

tion that only K is an “allowable” system of co-ordinates

and no gravitational field is present. The assumption of

the complete physical equivalence of the systems of coor-

dinates, K and K', we call the “principle of equivalence;”

[
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this principle is evidently intimately connected with the

law of the equality between the inert and the gravita-

tional mass, and signifies an extension of the principle of

relativity to co-ordinate systems which are in non-uniform

motion relatively to each other. In fact, through this

conception we arrive at the unity of the nature of inertia

and gravitation. For according to our way of looking at

it, the same masses may appear to be either under the

action of inertia alone (with respect to A') or under the

combined action of inertia and gravitation (with respect

to K'). The possibility of explaining the numerical

equality of inertia and gravitation by the unity of their

nature gives to the general theory of relativity, according

to my conviction, such a superiority over the conceptions

of classical mechanics, that all the difficulties encountered

must be considered as small in comparison with this progress.

What justifies us in dispensing with the preference for

inertial systems over all other co-ordinate systems, a

preference that seems so securely established by experience?

The weakness of the principle of inertia lies in this, that it

involves an argument in a circle: a mass moves without

acceleration if it is sufficiently far from other bodies; we
know that it is sufficiently far from other bodies only by the

fact that it moves without acceleration. Are there at all

any inertial systems for very extended portions of the

space-time continuum, or, indeed, for the whole universe?

We may look upon the principle of inertia as established,

to a high degree of approximation, for the space of our

planetary system, provided that we neglect the perturba-

tions due to the sun and planets. Stated more exactly,

there are finite regions, where, with respect to a suitably

chosen space of reference, material particles move freely

[
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without acceleration, and in which the laws of the special

theory of relativity, which have been developed above,

hold with remarkable accuracy. Such regions we shall

call “Galilean regions.” We shall proceed from the

consideration of such regions as a special case of known

properties.

The principle of equivalence demands that in dealing

with Galilean regions we may equally well make use of

non-inertial systems, that is, such co-ordinate systems as,

relatively to inertial systems, are not free from accelera-

tion and rotation. If, further, we are going to do away

completely with the vexing question as to the objective

reason for the preference of certain systems of co-ordinates,

then we must allow the use of arbitrarily moving systems

of co-ordinates. As soon as we make this attempt seriously

we come into conflict with that physical interpretation of

space and time to which we were led by the special theory

of relativity. For let K' be a system of co-ordinates whose

j'-axis coincides with the £-axis of K, and which rotates

about the latter axis with constant angular velocity. Are

the configurations of rigid bodies, at rest relatively to A',

in accordance with the laws of Euclidean geometry?

Since K' is not an inertial system, we do not know directly

the laws of configuration of rigid bodies with respect to

AT', nor the laws of nature, in general. But we do know

these laws with respect to the inertial system K, and we can

therefore infer their form with respect to A''. Imagine a

circle drawn about the origin in the x'y' plane of A', and a

diameter of this circle. Imagine, further, that we have

given a large number of rigid rods, all equal to each other.

We suppose these laid in series along the periphery and

the diameter of the circle, at rest relatively to K'

.

If f/is

the number of these rods along the periphery, D the number

[
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along the diameter, then, if h' does not rotate relatively to

K, we shall have

U
D

~ 7r ’

But if K' rotates we get a different result. Suppose that
at a definite time t, of K we determine the ends of all the
rods. With respect to A' all the rods upon the periphery
experience the Lorentz contraction, but the rods upon the
diameter do not experience this contraction (along their

lengths!).* It therefore follows that

U
Z)

> 7r '

It therefore follows that the laws of configuration of
rigid bodies with respect to K' do not agree with the
laws of configuration of rigid bodies that are in accord-
ance with Euclidean geometry. If, further, we place two
similar clocks (rotating with K'), one upon the periphery,
and the other at the centre of the circle, then, judged
from K, the clock on the periphery will go slower than
the clock at the centre. The same thing must take place,

judged from K', if we do not define time with respect to K'
in a wholly unnatural way, (that is, in such a way that

the laws with respect to K' depend explicitly upon the

time). Space and time, therefore, cannot be defined

with respect to K' as they were in the special theory of

relativity with respect to inertial systems. But, accord-

ing to the principle of equivalence, K' may also be con-
sidered as a system at rest, with respect to which there
is a gravitational field (field of centrifugal force, and

* These considerations assume that the behavior of rods and clocks
depends only upon velocities, and net upon accelerations, or, at least, that
the influence of acceleration does not counteract that of velocity.
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force of Coriolis). We therefore arrive at the result:

the gravitational field influences and even determines the

metrical laws of the space-time continuum. If the laws

of configuration of ideal rigid bodies are to be expressed

geometrically, then in the presence of a gravitational field

the geometry is not Euclidean.

The case that we have been considering is analogous

to that which is presented in the two-dimensional treat-

ment of surfaces. It is impossible in the latter case also,

to introduce co-ordinates on a surface (e.g. the surface of

an ellipsoid) which have a simple metrical significance,

while on a plane the Cartesian co-ordinates, X\, x2 ,
signify

directly lengths measured by a unit measuring rod. Gauss

overcame this difficulty, in his theory of surfaces, by intro-

ducing curvilinear co-ordinates which, apart from satisfying

conditions of continuity, were wholly arbitrary, and only

afterwards these co-ordinates were related to the metrical

properties of the surface. In an analogous way we shall

introduce in the general theory of relativity arbitrary

co-ordinates, x\, xit x 3 ,
x4 ,

which shall number uniquely the

space-time points, so that neighbouring events are associ-

ated with neighbouring values of the co-ordinates; other-

wise, the choice of co-ordinates is arbitrary. We shall be

true to the principle of relativity in its broadest sense if we

give such a form to the laws that they are valid in every

such four-dimensional system of co-ordinates, that is, if

the equations expressing the laws are co-variant with

respect to arbitrary transformations.

The most important point of contact between Gauss’s

theory of surfaces and the general theory of relativity

lies in the metrical properties upon which the concepts

of both theories, in the main, are based. In the case of

the theory of surfaces, Gauss’s argument is as follows.
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Plane geometry may be based upon the concept of the

distance ds, between two infinitely near points. The
concept of this distance is physically significant because

the distance can be measured directly by means of a rigid

measuring rod. By a suitable choice of Cartesian co-

ordinates this distance may be expressed by the formula

ds 2 = dx i

2 + dx 2
2

. We may base upon this quantity the

concepts of the straight line as the geodesic (5jVr = 0), the

interval, the circle, and the angle, upon which the Euclidean

plane geometry is built. A geometry may be developed

upon another continuously curved surface, if we observe

that an infinitesimally small portion of the surface may be

regarded as plane, to within relatively infinitesimal quanti-

ties. There are Cartesian co-ordinates, Xi, X2 ,
upon such

a small portion of the surface, and the distance between

two points, measured by a measuring rod, is given by

ds2 = dXx

2 + dX2
2

.

If we introduce arbitrary curvilinear co-ordinates, at j, x 2 ,

on the surface, then dX i, dX2 ,
may be expressed linearly

in terms of dx i, dx 2 . Then everywhere upon the surface

we have

ds2 + gndxi 2 + 2gudxidx 2 + gn.dx 2
2

where gu , g l2 , g 22 are determined by the nature of the

surface and the choice of co-ordinates; if these quantities

are known, then it is also known how networks of rigid

rods may be laid upon the surface. In other words, the

geometry of surfaces may be based upon this expression

for ds 2 exactly as plane geometry is based upon the corre-

sponding expression.

There are analogous relations in the four-dimensional

space-time continuum of physics. In the immediate
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neighbourhood of an observer, falling freely in a gravita-

tional field, there exists no gravitational held. We can

therefore always regard an infinitesimally small region of

the space-time continuum as Galilean. For such an

infinitely small region there will be an inertial system (with

the space co-ordinates, Xi, X3 ,
X3 ,

and the time co-ordinate

Xt) relatively to which we are to regard the laws of the

special theory of relativity as valid. The quantity which

is directly measurable by our unit measuring rods and

clocks,

dXJ + dX,' + dX3
2 - dXS

or its negative,

(54) ds2 = -dX ,

2 - dX2
2 - dX3

2 + dX\
2

is therefore a uniquely determinate invariant for two

neighbouring events (points in the four-dimensional con-

tinuum), provided that we use measuring rods that are

equal to each other when brought together and superim-

posed, and clocks whose rates are the same when they are

brought together. In this the physical assumption is

essential that the relative lengths of two measuring rods

and the relative rates of two clocks are independent, in

principle, of their previous history. But this assumption

is certainly warranted by experience; if it did not hold

there could be no sharp spectral lines, since the single atoms

of the same element certainly do not have the same history,

and since—on the assumption of relative variability of the

single atoms depending on previous history—it would be

absurd to suppose that the masses or proper frequencies of

these atoms ever had been equal to one another.

Space-time regions of finite extent are, in general, not

Galilean, so that a gravitational field cannot be done away
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with by any choice of co-ordinates in a finite region.

There is, therefore, no choice of co-ordinates for which
the metrical relations of the special theory of relativity

hold in a finite region. But the invariant ds always exists

for two neighbouring points (events) of the continuum.
This invariant ds may be expressed in arbitrary co-ordinates.

If one observes that the local dX, may be expressed linearly

in terms of the co-ordinate differentials dx„ ds 2 may be
expressed in the form

(55) ds2 = gi^dXf.dx,.

The functions describe, with respect to the arbitrarily

chosen system of co-ordinates, the metrical relations of the

space-time continuum and also the gravitational field.

As in the special theory of relativity, we have to discriminate

between time-like and space-like line elements in the four-

dimensional continuum; owing to the change of sign

introduced, time-like line elements have a real, space-like

line elements an imaginary ds. The time-like ds can be
measured directly by a suitably chosen clock.

According to what has been said, it is evident that the

formulation of the general theory of relativity requires a

generalization of the theory of invariants and the theory

of tensors; the question is raised as to the form of the

equations which are co-variant with respect to arbitrary

point transformations. The generalized calculus of tensors

was developed by mathematicians long before the theory

of relativity. Riemann first extended Gauss’s train of

thought to continua of any number of dimensions; with
prophetic vision he saw the physical meaning of this

generalization of Euclid’s geometry. Then followed the

development of the theory in the form of the calculus of

tensors, particularly by Ricci and Levi-Civita. This is
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the place for a brief presentation of the most important

mathematical concepts and operations of this calculus of

tensors.

We designate four quantities, which are defined as

functions of the x, with respect to every system of coordi-

nates, as components, A", of a contra-variant vector, if

they transform in a change of co-ordinates as-t-he co-ordinate

differentials dx,. We therefore have

( 56 )

. ,
dx'

A“' =
-a-

2 A’
ox.

Besides these contra-variant vectors, there are also co-

variant vectors. If B, are the components of a co-variant

vector, these vectors are transformed according to the rule

(57 )
- s

£ b-

The definition of a co-variant vector is chosen in such a

way that a co-variant vector and a contra-variant vector

together form a scalar according to the scheme,

<f>
= B,A’ (summed over the v).

For we have

- w, %; b-a> -

In particular, the derivatives ~— of a scalar <f>,
are com-

OXa

ponents of a co-variant vector, which, with the co-ordinate

d<f>

differentials, form the scalar dxa ;
we see from this

example how natural is the definition of the co-variant

vectors.

There are here, also, tensors of any rank, which may

have co-variant or contra-variant character with respect to
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each index; as with vectors, the character is designated by

the position of the index. For example, A

/

denotes a

tensor of the second rank, which is co-variant with respect

to the index n, and contra-variant with respect to the

index v. The tensor character indicates that the equation

of transformation is

(58)
dxa dx , .

“ dx', dx„
A °-

Tensors may be formed by the addition and subtraction

of tensors of equal rank and like character, as in the theory

of invariants of orthogonal linear substitutions, for example,

(59) a; + b; = c;.

The proof of the tensor character of C' depends upon (58).

Tensors may be formed by multiplication, keeping the

character of the indices, just as in the theory of invariants

of linear orthogonal transformations, for example,

(60) a;b„ = C^.

The proof follows directly from the rule of transformation.

Tensors may be formed by contraction with respect to

two indices of different character, for example,

(61) A^ = B„.

The tensor character of determines the tensor character

of B„. Proof

—

_dx^dx\,dx
JL
dxL g

dx, dx
tA^r ~ dx dx, dx dx'r

Aari ~ dx dx’r

Aal-

The properties of symmetry and skew-symmetry of a

tensor with respect to two indices of like character have

the same significance as in the theory of special relativity.

With this, everything essential has been said with regard

to the algebraic properties of tensors.

[
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The Fundamental Tensor. It follows from the invariance

of ds 2 for an arbitrary choice of the dx„ in connexion with

the condition of symmetry consistent with (55), that the

g„, are components of a symmetrical co-variant tensor

(Fundamental Tensor). Let us form the determinant, g,

of theg,,,,, and also the cofactors, divided by g, corresponding

to the various g These cofactors, divided by g, will be

denoted by g*’, and their co-variant character is not yet

known. Then we have

(62) = = 1 if a = f3

0 if a * 0

If we form the infinitely small quantities (co-variant

vectors)

(63) d£„ = g„«dxa

multiply by g and sum over the n, we obtain, by the

use of (62),

(64) dxB = g
B“d^.

Since the ratios of the d^„ are arbitrary, and the dxg as

well as the d^„ are components of vectors, it follows that

the g*’ are the components of a contra-variant tensor*

(contra-variant fundamental tensor). The tensor charac-

ter of (mixed fundamental tensor) accordingly follows,

dic'a
* If we multiply (64) by —— ,

sum over the 0, and replace the by a
dx$

transformation to the accented system, we obtain

dx'a
dx 9 dx'a „0

dx„ dxg S

The statement made above follows from this, since, by (64), we must also

have dx ' „ = and both equations must hold for every choice of the

[
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by (62). By means of the fundamental tensor, instead of

tensors with co-variant index character, we can introduce

tensors with contra-variant index character, and conversely.

For example,

A“ = g**Aa

Aft SiiaA

7 = a 0,,T1 H 1 M**

Volume Invariants. The volume element

is not an invariant.

(65)

jdx 1d.X2dx 3d.Xi = dx

For by Jacobi’s theorem,

dx'
dx' =

dx.
dx.

But we can complement dx so that it becomes an invariant.

If we form the determinant of the quantities

dxa dx

n

dx', dx'.
8«

we obtain, by a double application of the theorem of

multiplication of determinants,

g = \g
|

dx. 2 dx'„

\dx\ dx.

We therefore get the invariant,

y/g' dx' = Vg dx.

Formation oj Tensors by Differentiation. Although the

algebraic operations of tensor formation have proved

to be as simple as in the special case of invariance with

respect to linear orthogonal transformations, nevertheless

in the general case, the invariant differential operations
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are, unfortunately, considerably more complicated. The
reason for this is as follows. If A

“

is a contra-variant

dx'
vector, the coefficients of its transformation, are in-

dependent of position only if the transformation is a linear

one. Then the vector components, A“ + dxa ,
at a

neighbouring point transform in the same way as the

A“, from which follows the vector character of the vector

dA M

differentials, and the tensor character of ^— But if the
oxa

dx’

dx.
are variable this is no longer true.

That there are, nevertheless, in the general case, invari-

ant differential operations for tensors, is recognized most

satisfactorily in the following way, introduced by Levi-

Civita and Weyl. Let (A“
) be a contra-variant vector

whose components are given with respect to the co-ordinate

system of the x,. Let Pi and P2 be two infinitesimally near

points of the continuum. For the infinitesimal region

surrounding the point Pi, there is, according to our way
of considering the matter, a co-ordinate system of the X,

(with imaginary X
4
-co-ordinate ) for which the continuum

is Euclidean. Let A
( U be the co-ordinates of the vector at

the point Pi. Imagine a vector drawn at the point P2 ,

using the local system of the X„ with the same co-ordinates

(parallel vector through P2), then this parallel vector is

uniquely determined by the vector at Pi and the displace-

ment. We designate this operation, whose uniqueness will

appear in the sequel, the parallel displacement of the

vector A

„

from Pi to the infinitesimally near point P2 . If

we form the vector difference of the vector (T") at the point

Pi and the vector obtained by parallel displacement from

[
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P\ to Pt,

we get a vector which may be regarded as the

differential of the vector (A“) for the given displacement

(<&„).

This vector displacement can naturally also be considered

with respect to the co-ordinate system of the x,. If A’

are the co-ordinates of the vector at P i, A

’

+ 8
A’ the co-

ordinates of the vector displaced to P2 along the interval

(dx,), then the 5
A’ do not vanish in this case. We know

of these quantities, which do not have a vector character,

that they must depend linearly and homogeneously upon

the dx, and the A’. We therefore put

(67) hA' = —Y'apAadxB .

In addition, we can state that the T'j must be sym-

metrical with respect to the indices a and 0. For we can

assume from a representation by the aid of a Euclidean

system of local co-ordinates that the same parallelogram

will be described by the displacement of an element

dn) x, along a second element d'
2)
x, as by a displacement of

dx2) x, along dil)
x.. We must therefore have

d(2)x, + (diUx, — raed(l)x„d<2)
Xfi)

= d{1)x, + (d^
2)x, — Y l,

aad
(2)Xad'

x

'xt).

The statement made above follows from this, after inter-

changing the indices of summation, a and 0, on the right-

hand side.

Since the quantities gM , determine all the metrical

properties of the continuum, they must also determine

the r'p. If we consider the invariant of the vector A’,

that is, the square of its magnitude,

g„,AMA'
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which is an invariant, this cannot change in a parallel

displacement. We therefore have

dp
0 = 5(g^A'A’) = A>‘A'dxa + g„A»5A’ + g„,A’SA'‘

or, by (67),

(tr
~ " ^sT'°) A "A ’dx° = °-

Owing to the symmetry of the expression in the brackets

with respect to the indices n and v, this equation can be

valid for an arbitrary choice of the vectors (A“) and dx,

only when the expression in the brackets vanishes for all

combinations of the indices. By a cyclic interchange of

the indices n, v, a, we obtain thus altogether three equations,

from which we obtain, on taking into account the sym-

metrical property of the r“„,

(68 )

in which, following Christoffel, the abbreviation has been

used,

If we multiply (68) by g
a’ and sum over the a, we obtain

in which is the Christoffel symbol of the second kind.

Thus the quantities T are deduced from the g„„ Equa-

tions (67) and (70) are the foundation for the following

discussion.
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Co-variant Differentiation of Tensors. If (A“ + 8A“) is

the vector resulting from an infinitesimal parallel displace-

ment from Pi to Pi, and (A

“

+ dA“) the vector A“ at the

point Pi, then the difference of these two,

dA* - 8A“ = + Y*aA°\ dx,

is also a vector. Since this is the case for an arbitrary

choice of the dx,, it follows that

d/1 4

(71) A% = j- + T,“aA°

is a tensor, which we designate as the co-variant derivative

of the tensor of the first rank (vector). Contracting this

tensor, we obtain the divergence of the contra-variant

tensor A“. In this we must observe that according to (70),

(72) r;„

If we put, further,

(73)

25
dg.a _
dx u

1 5 Vp

V.? dx „

A“ Vg = gl"

a quantity designated by Weyl as the contra-variant tensor

density* of the first rank, it follows that,

(74)
da
dx

is a scalar density.

We get the law of parallel displacement for the co-variant

vector P„ by stipulating that the parallel displacement

’This expression is justified, in that A" yffgdx = has a tensor

character. Every tensor, when multiplied by changes into a tensor

density. We employ capital Gothic letters for tensor densities.

[
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shall be effected in such a way that the scalar

<t>
= A“B„

remains unchanged, and that therefore

A»hB, + B,5A“

vanishes for every value assigned to {A“). We therefore get

(75) dB

,

= rZAJx,.

From this we arrive at the co-variant derivative of the

co-variant vector by the same process as that which led

to (71),

(76) - rMv?a .

By interchanging the indices \± and a, and subtracting, we
get the skew-symmetrical tensor,

(77) 0 (iff

dB, _ dB,

dx, dx

,

For the co-variant differentiation of tensors of the

second and higher ranks we may use the process by which

(75) was deduced. Let, for example, (T, r ) be a co-variant

tensor of the second rank. Then A,TE'
,FJ

is a scalar, if

E and F are vectors. This expression must not be changed

by the 5-displacement; expressing this by a formula, we
get, using (67), hA,r ,

whence we get the desired co-variant

derivative,

dA
(78) A, r ,f

= - r»yu - r;pa„.

In order that the general law of co-variant differentiation

of tensors may be clearly seen, we shall write down two
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co-variant derivatives deduced in an analogous way:

(?9) Alp = + V°>A °-

3A° r

(so) az = + r0yt°r + r;X“

The general law of formation now becomes evident.

From these formulas we shall deduce some others which

are of interest for the physical applications of the theory.

In case A„ is skew-symmetrical, we obtain the tensor

(81)
dA„ dA„

dx„ dx, dxT

which is skew-symmetrical in all pairs of indices, by cyclic

interchanges and addition.

If, in (78), we replace A„ by the fundamental tensor,

g,T ,
then the right-hand side vanishes identically; an

analogous statement holds for (80) with respect to g'r
;

that is, the co-variant derivatives of the fundamental tensor

vanish. That this must be so we see directly in the local

system of co-ordinates.

In case A" is skew-symmetrical, we obtain from (80), by

contraction with respect to r and p,

(82) a*
aa-
d.v r

In the general case, from (79) and (80), by contraction

with respect to r and p, we obtain the equations,

(83)
r)9a

a. =~ - nx-

(84)
da'»^ = aXm +
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The Riemann Tensor. If we have given a curve extending

from the point P to the point G of the continuum, then a

vector A“, given at P, may, by a parallel displacement, be

moved along the curve to G. If the continuum is Euclidean

(more generally, if by a suitable choice of co-ordinates the

are constants) then the vector obtained at G as a result

of this displacement docs not depend upon the choice of

the curve joining P and G. But otherwise, the result

depends upon the path of the displacement. In this case,

6

Fig. 4.

therefore, a vector suffers a change, AA“ (in its direction,

not its magnitude), when it is carried from a point P of a

closed curve, along the curve, and back to P. We shall

now calculate this vector change:

As in Stokes’ theorem for the line integral of a vector

around a closed curve, this problem may be reduced to

the integration around a closed curve with infinitely small

linear dimensions; we shall limit ourselves to this case.
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We have, first, by (67),

AA“ = —

In this, is the value of this quantity at the variable

point G of the path of integration. If we put

= Mg ~ Mp
and denote the value of Y“aB at P by then we have,

with sufficient accuracy,

Let, further, Aa be the value obtained from A“ by a

parallel displacement along the curve from P to G. It

may now easily be proved by means of (67) that A" — A

“

is infinitely small of the first order, while, for a curve of

infinitely small dimensions of the first order, AA“ is infinitely

small of the second order. Therefore there is an error of

only the second order if we put

A a = A“ - r:r A'£'.

If we introduce these values of Y“aB and Aa into the

integral, we obtain, neglecting all quantities of a higher

order than the second,

A-
<f>

The quantity removed from under the sign of integration

refers to the point P. Subtracting from the

integrand, we obtain

1 $ (W ~ »)•
[76]
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This skew-symmetrical tensor of the second rank, /°s

,

characterizes the surface element bounded by the curve

in magnitude and position. If the expression in the

brackets in (85) were skew-symmetrical with respect to

the indices a and 0, we could conclude its tensor character

from (85). We can accomplish this by interchanging the

summation indices a and /3 in (85) and adding the resulting

equation to (85). We obtain

(86) 2AA* = -RZagA’f"*

in which

(87)

The tensor character of follows from (86); this is

the Riemann curvature tensor, of the fourth rank, whose

properties of symmetry we do not need to go into. Its

vanishing is a sufficient condition (disregarding the reality

of the chosen co-ordinates) that the continuum is Euclidean.

By contraction of the Riemann tensor with respect to

the indices n, /3, we obtain the symmetrical tensor of the

second rank,

(88) + r;,na + - iW,

The last two terms vanish if the system of co-ordinates

is so chosen that g = constant. From R„, we can form

the scalar,

(89) R = g"R„.

Straightest (Geodesic) Lines. A line may be constructed

in such a way that its successive elements arise from each

other by parallel displacements. This is the natural

[77]
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generalization of the straight line of the Euclidean geom-

etry. For such a line, we have

The left-hand side is to be replaced by
d\.

*

ds
21 so that we

have

(90)
d2x„

ds 2 aB
ds ds

= 0 .

We get the same line if we find the line which gives a

stationary value to the integral

f ds or
J Vg^dx^dx,

between two points (geodesic line).

* The direction vector at a neighbouring point of the curve results, by a
parallel displacement along the line element (dxg), from the direction vector

of each point considered.

[
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THE GENERAL THEORY
OF RELATIVITY

(Continued

)

TA7E are now in possession of the mathematical apparatus
^ * which is necessary to formulate the laws of the general

theory of relativity. No attempt will be made in this

presentation at systematic completeness, but single results

and possibilities will be developed progressively from what
is known and from the results obtained. Such a presenta-

tion is most suited to the present provisional state of our

knowledge.

A material particle upon which no force acts moves,

according to the principle of inertia, uniformly in a straight

line. In the four-dimensional continuum of the special

theory of relativity (with real time co-ordinate) this is a

real straight line. The natural, that is, the simplest,

generalization of the straight line which is meaningful in the

system of concepts of the general (Riemannian) theory of

invariants is that of the straightest, or geodesic, line. We
shall accordingly have to assume, in the sense of the principle

of equivalence, that the motion of a material particle,

under the action only of inertia and gravitation, is described

by the equation,

(90 )

iPx

„

+ r
:a/J

dxa dxe
n

ds ds

In fact, this equation reduces to that of a straight line if

all the components, r„„, of the gravitational field vanish.
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How are these equations connected with Newton’s

equations of motion? According to the special theory of

relativity, the g„, as well as the g“’, have the values, with

respect to an inertial system (with real time co-ordinate

and suitable choice of the sign of ds‘
2

),

- 1 0 0 0

0-1 00
0 0-10
0 0 0 1

The equations of motion then become

We shall call this the “first approximation” to the g„,-

field. In considering approximations it is often useful,

as in the special theory of relativity, to use an imaginary

x«-co-ordinate, as then the g„„ to the first approximation,

assume the values

0 0 0

1 0 0

0-1 0

0 0-1
These values may be collected in the relation

gilt
=

To the second approximation we must then put

(92) g„, = — 5„, + 7*-

where the y„, are to be regarded as small of the first order.

[ 80 ]
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Both terms of our equation of motion are then small of

the first order. If we neglect terms which, relatively to

these, are small of the first order, we have to put

(93) ds 2 = -dxS = dl\ 1 - q
2
)

(94)
d7g,\
dxa )'

We shall now introduce an approximation of a second

kind. Let the velocity of the material particles be very

small compared to that of light. Then ds will be the

same as the time differential, dl. Further, -A -A
ds ds ds

will vanish compared to We shall assume, in addi-

tion, that the gravitational field varies so little with the

time that the derivatives of the 7„, by x 4 may be neglected.

Then the equation of motion (for n — 1, 2, 3) reduces to

(90a)
tPx

„ _ _d_ (y**\
dl 2 ~ dx\ 2 )

This equation is identical with Newton’s equation of

motion for a material particle in a gravitational field, if

we identify
Cf)

with the potential of the gravitational

field; whether or not this is allowable, naturally depends

upon the field equations of gravitation, that is, it depends

upon whether or not this quantity satisfies, to a first approxi-

mation, the same laws of the field as the gravitational poten-

tial in Newton’s theory. A glance at (90) and (90a)

shows that the Tga actually do play the role of the intensity

of the gravitational field. These quantities do not have a

tensor character.

Equations (90) express the influence of inertia and

gravitation upon the material particle. The unity of

[81 ]
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inertia and gravitation is formally expressed by the fact

that the whole left-hand side of (90) has the character of a

tensor (with respect to any transformation of co-ordinates),

but the two terms taken separately do not have tensor

character. In analogy with Newton’s equations, the first

term would be regarded as the expression for inertia,

and the second as the expression for the gravitational force.

We must next attempt to find the laws of the gravita-

tional field. For this purpose, Poisson’s equation,

A
<f>
= AivKp

of the Newtonian theory must serve as a model. This

equation has its foundation in the idea that the gravita-

tional field arises from the density p of ponderable matter.

It must also be so in the general theory of relativity. But

our investigations of the special theory of relativity have

shown that in place of the scalar density of matter we have

the tensor of energy per unit volume. In the latter is

included not only the tensor of the energy of ponderable

matter, but also that of the electromagnetic energy. We
have seen, indeed, that in a more complete analysis the

energy tensor can be regarded only as a provisional means
of representing matter. In reality, matter consists of

electrically charged particles, and is to be regarded itself

as a part, in fact, the principal part, of the electromagnetic

field. It is only the circumstance that we have no suffi-

cient knowledge of the electromagnetic field of concentrated

charges that compels us, provisionally, to leave undeter-

mined in presenting the theory, the true form of this tensor.

From this point of view it is at present appropriate to

introduce a tensor T of the second rank of as yet unknown

structure, which provisionally combines the energy density

of the electromagnetic field and that of ponderable matter;

[
82 ]



THE GENERAL THEORY
we shall denote this in the following as the “energy tensor

of matter.”

According to our previous results, the principles of

momentum and energy are expressed by the statement

that the divergence of this tensor vanishes (47c). In the

general theory of relativity, we shall have to assume as

valid the corresponding general co-variant equation. If

(7”„,) denotes the co-variant energy tensor of matter, W,
the corresponding mixed tensor density, then, in accord-

ance with (83), we must require that

(95) 0 , „ ,

dx.
1

be satisfied. It must be remembered that besides the

energy density of the matter there must also be given an

energy density of the gravitational field, so that there can

be no talk of principles of conservation of energy and

momentum for matter alone. This is expressed mathe-

matically by the presence of the second term in (95), which

makes it impossible to conclude the existence of an integral

equation of the form of (49). The gravitational field

transfers energy and momentum to the “matter,” in that

it exerts forces upon it and gives it energy; this is expressed

by the second term in (95).

If there is an analogue of Poisson’s equation in the

general theory of relativity, then this equation must be a

tensor equation for the tensor g„ y of the gravitational

potential; the energy tensor of matter must appear on
the right-hand side of this equation. On the left-hand

side of the equation there must be a differential tensor

in the g„,. We have to find this differential tensor. It

is completely determined by the following three conditions:

[ 83 ]
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1. It may contain no differential coefficients of the

higher than the second.

2. It must be linear in these second differential coeffi-

cients.

3. Its divergence must vanish identically.

The first two of these conditions are naturally taken

from Poisson’s equation. Since it may be proved mathe-

matically that all such differential tensors can be formed

algebraically (i.e. without differentiation) from Riemann’s

tensor, our tensor must be of the form

R^V “I” Qg^yR

in which R„ y and R are defined by (88) and (89) respec-

tively. Further, it may be proved that the third condi-

tion requires a to have the value — For the law of the

gravitational field we therefore get the equation

(96) — ig?,R = — kT*,,.

Equation (95) is a consequence of this equation, k denotes

a constant, which is connected with the Newtonian gravita-

tion constant.

In the following I shall indicate the features of the

theory which are interesting from the point of view of

physics, using as little as possible of the rather involved

mathematical method. It must first be shown that the

divergence of the left-hand side actually vanishes. The
energy principle for matter may be expressed, by (83),

(97) o =^ -rt&i
(JXa

in which = T,rg
Tay/ —g.

The analogous operation, applied to the left-hand side of

(96), will lead to an identity.

[ 84
]
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In the region surrounding each world-point there are

systems of co-ordinates for which, choosing the ^-coordi-

nate imaginary, at the given point,

g" = g

— 1 if n = v

0 if m ^ v.

and for which the first derivatives of the and the g*’

vanish. We shall verify the vanishing of the divergence

of the left-hand side at this point. At this point the

components vanish, so that we have to prove the

vanishing only of

Introducing (88) and (70) into this expression, we see

that the only terms that remain are those in which third

derivatives of the gm enter. Since the^ v are to be replaced

by — 5„„, we obtain, finally, only a few terms which may
easily be seen to cancel each other. Since the quantity

that we have formed has a tensor character, its vanishing

is proved for every other system of co-ordinates also, and

naturally for every other four-dimensional point. The
energy principle of matter (97) is thus a mathematical

consequence of the field equations (96).

In order to learn whether the equations (96) are con-

sistent with experience, we must, above all else, find out

whether they lead to the Newtonian theory as a first

approximation. For this purpose we must introduce

various approximations into these equations. We already

know that Euclidean geometry and the law of the constancy

of the velocity of light are valid, to a certain approxima-

tion, in regions of a great extent, as in the planetary sys-
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tem. If, as in the special theory of relativity, we take the

fourth co-ordinate imaginary, this means that we must put

(98) g„. = -<5„, + Y„,

in which the are so small compared to 1 that we can

neglect the higher powers of the 7„, and their derivatives.

If we do this, we learn nothing about the structure of the

gravitational field, or of metrical space of cosmical dimen-

sions, but we do learn about the influence of neighbouring

masses upon physical phenomena.

Before carrying through this approximation we shall

transform (96). We multiply (96) by g“’, summed over

the n and v\ observing the relation which follows from the

definition of the g“’,

g*>?’ = 4

we obtain the equation

R = Kgt’T*, = kT.

If we put this value of R in (96) we obtain

(96a) R„, = — k(T„, — \gn.T) = —kT*,.

When the approximation which has been mentioned is

carried out, we obtain for the left-hand side,

in which has been put

(99) y'„. 3TY
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We must now note that equation (96) is valid for any

system of co-ordinates. We have already specialized the

system of co-ordinates in that we have chosen it so that

within the region considered the g„ , differ infinitely little

from the constant values — 5^,. But this condition remains

satisfied in any infinitesimal change of co-ordinates, so

that there are still four conditions to which the may be

subjected, provided these conditions do not conflict with

the conditions for the order of magnitude of the y„,. We
shall now assume that the system of co-ordinates is so

chosen that the four relations

—

( 100 ) 0 = dy'„

dx.

dy„, _ 1
dy„

dx, ^ dx„

are satisfied. Then (96a) takes the form

(96b) = 2kT*

These equations may be solved by the method, familiar

in electrodynamics, of retarded potentials; we get, in an

easily understood notation,

( 101 ) y = - JL
[

1 ~ r)
dV(j

2ir J r

In order to see in what sense this theory contains the

Newtonian theory, we must consider in greater detail the

energy tensor of matter. Considered phenomenologically,

this energy tensor is composed of that of the electromagnetic

field and of matter in the narrower sense. If we consider

the different parts of this energy tensor with respect to

their order of magnitude, it follows from the results of the

special theory of relativity that the contribution of the

electromagnetic field practically vanishes in comparison

[
87 ]



THE GENERAL THEORY

to that of ponderable matter. In our system of units, the

energy of one gram of matter is equal to 1, compared to

which the energy of the electric fields may be ignored, and

also the energy of deformation of matter, and even the

chemical energy. We get an approximation that is fully

sufficient for our purpose if we put

(102)

ds2 = g^dx^dx,

In this, a is the density at rest, that is, the density of the

ponderable matter, in the ordinary sense, measured with

the aid of a unit measuring rod, and referred to a Galilean

system of co-ordinates moving with the matter.

We observe, further, that in the co-ordinates we have

chosen, we shall make only a relatively small error if we

replace the g„, by — so that we put

ds2 = — 2 dx„ 2
.(102a)

The previous developments are valid however rapidly

the masses which generate the field may move relatively

to our chosen system of quasi-Galilean co-ordinates. But

in astronomy we have to do with masses whose velocities,

relatively to the co-ordinate system employed, are always

small compared to the velocity of light, that is, small

compared to 1, with our choice of the unit of time. We
therefore get an approximation which is sufficient for

nearly all practical purposes if in (101) we replace the

retarded potential by the ordinary (non-retarded) potential,

and if, for the masses which generate the field, we put

= V^T.

[ 88 ]

(103a)
dl



THE GENERAL THEORY
Then we get for T"' and T„, the values

(104)

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 -a

For T we get the value a, and, finally, for T* the values,

(104a)

<7

2

0

0

0

a

2

0

0

0

0

1 »

o

We thus get, from (101),

k f odV0

7n = 72 2 = 733 » —
(101a)

74-1 = +
4ir j

CTdVo

while at the other 7„„ vanish. The last of these equa-

tions, in connexion with equation (90a), contains New-

ton’s theory of gravitation. If we replace / by ct we get

<"*» {&-££/ nr*

We see that the Newtonian gravitation constant K, is

connected with the constant k that enters into our field

equations by the relation

<-2

K =
KC‘

Sir

[89]
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From the known numerical value of K, it therefore follows

that

8tr . 6'67 . 1(T 8

9 . 10 20
= 1-86 . 1CT 27

.

From (101) we see that even in the first approximation

the structure of the gravitational field differs fundamentally

from that which is consistent with the Newtonian theory;

this difference lies in the fact that the gravitational potential

has the character of a tensor and not a scalar. This was

not recognized in the past because only the component gu,

to a first approximation, enters the equations of motion of

material particles.

In order now to be able to judge the behaviour of

measuring rods and clocks from our results, wc must

observe the following. According to the principle of

equivalence, the metrical relations of the Euclidean geom-

etry are valid relatively to a Cartesian system of reference

of infinitely small dimensions, and in a suitable state of

motion (freely falling, and without rotation). We can

make the same statement for local systems of co-ordinates

which, relatively to these, have small accelerations, and

therefore for such systems of co-ordinates as are at rest

relatively to the one we have selected. For such a local

system, we have, for two neighbouring point events,

ds2 = - dXS - dXS - dX3
2 + dT2 = - dS2 + dT2

where dS is measured directly by a measuring rod and

dT by a clock at rest relatively to the system: these are

the naturally measured lengths and times. Since ds2
,
on

the other hand, is known in terms of the co-ordinates x,

employed in finite regions, in the form

ds 2 = g)i,dxll
dx

l

[90]
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we have the possibility of getting the relation between

naturally measured lengths and times, on the one hand,

and the corresponding differences of co-ordinates, on the

other hand. As the division into space and time is in

agreement with respect to the two systems of co-ordinates,

so when we equate the two expressions for ds 2 we get two

relations. If, by (101a), we put

ds 2 = -
('

(dx i

2 + dx 2
2 + dx 3

2
)

we obtain, to a sufficiently close approximation,

ly/dXV + dX2
2 + dXx

(106) =
^

1 + g^. J— Vdx i

2 + dx 3
2 + dx 3

The unit measuring rod has therefore the coordinate

len§th
> _k_

[
adV°

8tt J r

in respect to the system of co-ordinates we have selected.

The particular system of co-ordinates we have selected

insures that this length shall depend only upon the place,

and not upon the direction. If we had chosen a different

system of co-ordinates this would not be so. But however

we may choose a system of co-ordinates, the laws of con-

figuration of rigid rods do not agree with those of Euclidean

geometry; in other words, we cannot choose any system

of co-ordinates so that the co-ordinate differences, A*i,

[91 ]
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A*2, A.V3, corresponding to the ends of a unit measuring
rod, oriented in any way, shall always satisfy the relation

A*i 2 + Ax2
2 + A*3 2 = 1. In this sense space is not Euclid-

ean, but “curved.” It follows from the second of the

relations above that the interval between two beats of the

unit clock (dT = 1) corresponds to the “time”

in the unit used in our system of co-ordinates. The rate

of a clock is accordingly slower the greater is the mass of

the ponderable matter in its neighbourhood. We there-

fore conclude that spectral lines which are produced on
the sun’s surface will be displaced towards the red, com-
pared to the corresponding lines produced on the earth,

by about 2 . 10
-6

of their wave-lengths. At first, this

important consequence of the theory appeared to conflict

with experiment; but results obtained during the past

years seem to make the existence of this effect more and
more probable, and it can hardly be doubted that this conse-

quence of the theory will be confirmed within the next years.

Another important consequence of the theory, which
can be tested experimentally, has to do with the path of

rays of light. In the general theory of relativity also the

velocity of light is everywhere the same, relatively to a

local inertial system. This velocity is unity in our natural

measure of time. The law of the propagation of light in

general co-ordinates is therefore, according to the general

theory of relativity, characterized, by the equation

ds2 = 0.

To within the approximation which we are using, and in

the system of co-ordinates which we have selected, the

[92]
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velocity of light is characterized, according to (106), by

the equation

(i +£ /
(*•’ + *•’ + *•)

The velocity of light L, is therefore expressed in our co-

ordinates by

(107)
y/dxf + rfx?

2 + dx 3
2

5/ 4-r J r

We can therefore draw the conclusion from this, that a

ray of light passing near a large mass is deflected. If we

imagine the sun, of mass M, concentrated at the origin of

our system of co-ordinates, then a ray of light, travelling

parallel to the x 3-axis, in the xi — x 3 plane, at a distance

A from the origin, will be deflected, in all, by an amount

towards the sun.

(108)

f
+ "

i dL
a ~ L 3*,

dXi

On performing the integration we get

kAI

2irA

The existence of this deflection, which amounts to 1.7"

for A equal to the radius of the sun, was confirmed, with

remarkable accuracy, by the English Solar Eclipse Expedi-

tion in 1919, and most careful preparations have been made

to get more exact observational data at the solar eclipse

in 1922. It should be noted that this result, also, of the

theory is not influenced by our arbitrary choice of a system

of co-ordinates.

[ 93 ]



THE GENERAL THEORY
This is the place to speak of the third consequence of

the theory which can be tested by observation, namely,

that which concerns the motion of the perihelion of the

planet Mercury. The secular changes in the planetary

orbits are known with such accuracy that the approxima-

tion we have been using is no longer sufficient for a com-
parison of theory and observation. It is necessary to go

back to the general field equations (96). To solve this

problem I made use of the method of successive approxi-

mations. Since then, however, the problem of the central

symmetrical statical gravitational field has been completely

solved by Schwarzschild and others; the derivation given

by H. Weyl in his book, “Raum-Zeit-Materie,” is particu-

larly elegant. The calculation can be simplified somewhat

if we do not go back directly to the equation (96), but base

it upon a principle of variation that is equivalent to this

equation. I shall indicate the procedure only in so far as

is necessary for understanding the method.

In the case of a statical field, ds2 must have the form

(
ds2 = —da 2 -\-pdxi 1

(l®9
) I do 2 = %yafdxadxff

[ 1-3

where the summation on the right-hand side of the last

equation is to be extended over the space variables only,

The central symmetry of the field requires the y„, to be

of the form,

(110) Tad = + \xaxe

p, n and X are functions of r = Vx x

2 + x2
2

-f- x3
2 only.

One of these three functions can be chosen arbitrarily,

because our system of co-ordinates is, a priori, completely

arbitrary; for by a substitution
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x\ = *4

x'a = F(r)xa

we can always insure that one of these three functions

shall be an assigned function of r'. In place of (110) we

can therefore put, without limiting the generality,

(110a) *Ya(j ^ad d- hxaXj).

In this way the g„, are expressed in terms of the two

quantities X and /. These are to be determined as func-

tions of r, by introducing them into equation (96), after

first calculating the T", from (109) and (110a). We have

nir 1
^ ^aX(l d“ 2\r§ ar0 Q 1 O= iy T+Xi1 (fora

’ ^ = 2
’ 3)

(110b)
{ rj4 = = Tl, = 0 (for a, 0 = 1, 2, 3)

r 4 _ i

f
-2§P,

1

4

“ " d dxj
r- - i V2

With the help of these results, the field equations furnish

Schwarzschild’s solution:

(109a) ——— ~ + r
2 (sin 2

6d<t>
2 + dd 2

)
/l

r

in which we have put

x t

Xl

Xi

X 3

A

= /

= r sin d sin <j>

= r sin 6 cos <p

= r cos 6

_ kM
4ir

[ 95 ]
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M denotes the sun’s mass, centrally symmetrically placed

about the origin of co-ordinates; the solution (109a) is valid

only outside of this mass, where all the T», vanish. If the
motion of the planet takes place in the — x2 plane then
we must replace (109a) by

(109c) ds2 = (l - ^)dl 2 - ~ r
2
d<t>\

The calculation of the planetary motion depends upon
equation (90). From the first of equations (110b) and
(90) we get, for the indices 1, 2, 3,

d ( dxs dxa\
ds \

Xa
ds

x
* ds )

= 0

or, if we integrate, and express the result in polar co-

ordinates,

( 111 )
2

d<t>

r
~jfs

= constant.

From (90), for ju = 4, we get

_ 1 dp dx„ (U _ cPl- dp- <U

ds 2
f'

1 dxa ds ds ds 2 ^ f
2 ds ds

From this, after multiplication by f2 and integration, we
have

(11 2) y
2 — = constant.

In (109c), (111) and (112) we have three equations
between the four variables s, r, l and <£, from which the

motion of the planet may be calculated in the same way
as in classical mechanics. The most important result we
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get from this is a secular rotation of the elliptic orbit of

the planet in the same sense as the revolution of the planet,

amounting in radians per revolution to

(113)
247r 3a J

(1 - OcT
where

a — the semi-major axis of the planetary orbit in

centimetres.

e — the numerical eccentricity.

c = 3 . 10+1 °, the velocity of the light in vacuo.

T = the period of revolution in seconds.

This expression furnishes the explanation of the motion

of the perihelion of the planet Mercury, which has been

known for a hundred years (since Leverrier), and for

which theoretical astronomy has hitherto been unable

satisfactorily to account.

There is no difficulty in expressing Maxwell’s theory

of the electromagnetic field in terms of the general theory

of relativity; this is done by application of the tensor

formation (81), (82) and (77) Let </>„ be a tensor of the

first rank, to be interpreted as an electromagnetic 4-poten-

tial; then as electromagnetic field tensor may be defined by

the relations,

(114)
d<K
d.v„ dx„

The second of Maxwell’s systems of equations is then defined

by the tensor equation, resulting from this,

(114a)
d<t>„

,

d^j, _
dx,

+
dx„

+
dx.

and the first of Maxwell’s systems of equations is defined

by the tensor-density relation

[
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djp

dx

.

-

S'" = ^ ~g g~g"<l>.r

dxv

ds

/ dx u

If we introduce the energy tensor of the electromagnetic

field into the right-hand side of (96), we obtain (115),

for the special easel!" = 0, as a consequence of (96) by
taking the divergence. This inclusion of the theory of

electricity in the scheme of the general theory of relativity

has been considered arbitrary and unsatisfactory by many
theoreticians. Nor can we in this way understand the

equilibrium of the electricity which constitutes the ele-

mentary electrically charged particles. A theory in which
the gravitational field and the electromagnetic field do not

enter as logically distinct structures would be much pref-

erable. H. Weyl, and recently Th. Kaluza, have put for-

ward ingenious ideas along this direction; but concerning
them, I am convinced that they do not bring us nearer to

the true solution of the fundamental problem. I shall

not go into this further, but shall give a brief discussion of

the so-called cosmological problem, for without this, the

considerations regarding the general theory of rclativitv

would, in a certain sense, remain unsatisfactory.

Our previous considerations, based upon the field equa-
tions (96), had for a foundation the conception that space

on the whole is Galilean-Euclidean, and that this character

is disturbed only by masses embedded in it. This con-

ception was certainly justified as long as we were dealing

with spaces of the order of magnitude of those that astron-

omy has mostly to do with. But whether portions of the
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universe, however large they may be, are quasi-Euclidean,

is a wholly different question. We can make this clear

by using an example from the theory of surfaces which

we have employed many times. If a certain portion of a

surface is practically plane, it does not at all follow that

the whole surface has the form of a plane; the surface

might just as well be a sphere of sufficiently large radius.

The question as to whether the universe as a whole is non-

Euclidean was much discussed from the geometrical point

of view before the development of the theory of relativity.

But with the theory of relativity, this problem has entered

upon a new stage, for according to this theory the geo-

metrical properties of bodies are not independent, but

depend upon the distribution of masses.

If the universe were quasi-Euclidean, then Mach was

wholly wrong in his thought that inertia, as well as gravita-

tion, depends upon a kind of mutual action between bodies.

For in this case, for a suitably selected system of co-

ordinates, the g„, would be constant at infinity, as they

are in the special theory of relativity, while within finite

regions the g„„ would differ from these constant values by

small amounts only, for a suitable choice co-ordinates,

as a result of the influence of the masses in finite regions.

The physical properties of space would not then be wholly

independent, that is, uninfluenced by matter, but in the

main they would be, and only in small measure condi-

tioned by matter. Such a dualistic conception is even in

itself not satisfactory; there are, however, some important

physical arguments against it, which we shall consider.

The hypothesis that the universe is infinite and Euclidean

at infinity, is, from the relativistic point of view, a com-

plicated hypothesis. In the language of the general

theory of relativity it demands that the Riemann tensor of

[
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the fourth rank, Rikim, shall vanish at infinity, which
furnishes twenty independent conditions, while only ten

curvature components, R„„ enter into the laws of the gravi-

tational field. It is certainly unsatisfactory to postulate

such a far-reaching limitation without any physical basis

for it.

But in the second place, the theory of relativity makes
it appear probable that Mach was on the right road in his

thought that inertia depends upon a mutual action of

matter. For we shall show in the following that, according

to our equations, inert masses do act upon each other in

the sense of the relativity of inertia, even if only very feebly.

What is to be expected along the line of Mach’s thought?

1 . The inertia of a body must increase when ponderable

masses are piled up in its neighbourhood.

2. A body must experience an accelerating force when
neighbouring masses are accelerated, and, in fact,

the force must be in the same direction as that

acceleration.

3. A rotating hollow body must generate inside of itself

a “Coriolis field,” which deflects moving bodies

in the sense of the rotation, and a radial centrifugal

field as well.

We shall now show that these three effects, which are

to be expected in accordance with Mach’s ideas, are

actually present according to our theory, although their

magnitude is so small that confirmation of them by labora-

tory experiments is not to be thought of. For this purpose

we shall go back to the equations of motion of a material

particle (90), and carry the approximations somewhat
further than was done in equation (90a).
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First, we consider 744 as small of the first order. The

square of the velocity of masses moving under the influence

of the gravitational force is of the same order, according

to the energy equation. It is therefore logical to regard

the velocities of the material particles we are considering,

as well as the velocities of the masses which generate the

field, as small, of the order We shall now carry out the

approximation in the equations that arise from the field

equations (101) and the equations of motion (90) so far

as to consider terms, in the second member of (90), that

are linear in those velocities. Further, we shall not put

ds and dl equal to each other, but, corresponding to the

higher approximation, we shall put

ds = V/

.£44 dl = ^1
— dl.

From (90) we obtain, at first,

(116)
d
\( y ,

dx«dxi(.
, 7«\*

di[y + T)dij ~
di v 2 )

From (101) we get, to the approximation sought for,

k f adV0

-7ii = -722 = -733 = Y 44 = 4^ J
—

(117) 74a = -

7 aff = 0

IK

2-jr

/
dxa

a
lF

dV°

in which, in (117), a and /3 denote the space indices only.

744
On the right-hand side of (116) we can replace 1 -\—

^

by 1 and — by ["*]. It is easy to see, in addition, that

to this degree of approximation we must put
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^ dx„ dx t

in which a, fi and n denote space indices. We therefore

obtain from (116), in the usual vector notation,

(118)

The equations of motion, (118), show now, in fact, that

1 . The inert mass is proportional to 1 + o
,
and therefore

increases when ponderable masses approach the test

body.

2. There is an inductive action of accelerated masses, of

the same sign, upon the test body. This is the term
da
61

3.

A material particle, moving perpendicularly to the

axis of rotation inside a rotating hollow body, is

deflected in the sense of the rotation (Coriolis field).

The centrifugal action, mentioned above, inside a

rotating hollow body, also follows from the theory,

as has been shown by Thirring.*

* That the centrifugal action must be inseparably connected with the

existence of the Coriolis field may be recognized, even without calculation,

in the special case of a co-ordinate system rotating uniformly relatively to

an inertial system; our general co-variant equations naturally must apply
to such a case.
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Although all of these effects are inaccessible to experi-

ment, because k is so small, nevertheless they certainly exist

according to the general theory of relativity. We must

see in them a strong support for Mach’s ideas as to the

relativity of all inertial actions. If we think these ideas

consistently through to the end we must expect the whole

inertia, that is, the whole g„,-field, to be determined by the

matter of the universe, and not mainly by the boundary

conditions at infinity.

For a satisfactory conception of the g^-field of cosmical

dimensions, the fact seems to be of significance that the

relative velocity of the stars is small compared to the

velocity of light. It follows from this that, with a suit-

able choice of co-ordinates, g 44 is nearly constant in the

universe, at least, in that part of the universe in which

there is matter. The assumption appears natural, more-

over, that there are stars in all parts of the universe, so

that we may well assume that the inconstancy of g 44

depends only upon the circumstance that matter is not

distributed continuously, but is concentrated in single

celestial bodies and systems of bodies. If we are willing

to ignore these more local non-uniformities of the density

of matter and of the -field, in order to learn something

of the geometrical properties of the universe as a whole,

it appears natural to substitute for the actual distribution

of masses a continuous distribution, and furthermore to

assign to this distribution a uniform density a. In this

imagined universe all points with space directions will

be geometrically equivalent; with respect to its space

extension it will have a constant curvature, and will be

cylindrical with respect to its x 4-co-ordinate. The pos-

sibility seems to be particularly satisfying that the universe

is spatially bounded and thus, in accordance with our

[
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assumption of the constancy of <r, is of constant curvature,

being either spherical or elliptical; for then the boundary

conditions at infinity which are so inconvenient from the

standpoint of the general theory of relativity, may be

replaced by the much more natural conditions for a closed

space.

According to what has been said, we are to put

(119) ds 2 = dx 2 — yhrdx„dx.

in which the indices n and v run from 1 to 3 only. The

y„, will be such functions of .Vi, * 2 ,
x 3 as correspond to a

three-dimensional continuum of constant positive curva-

ture. We must now investigate whether such an assump-

tion can satisfy the field equations of gravitation.

In order to be able to investigate this, we must first

find what differential conditions the three-dimensional

manifold of constant curvature satisfies. A spherical

manifold of three dimensions, embedded in a Euclidean

continuum of four dimensions,* is given by the equations

*i
2 + * 2

2 + x 3
2 + * 4

2 = a
2

dx i

2 + </.v 2
2 + dx 3

2 + dxi 2 = ds2
.

By eliminating * 4 ,
we get

(x\dxi + xidx-i -f- x 3dxi)
2

a 2 — Xi
2 — x 2

2 — a-

3
2

Neglecting terms of the third and higher degrees in the

x„ we can put, in the neighbourhood of the origin of

co-ordinates,

* The aid of a fourth space dimension has naturally no significance except

that of a mathematical artifice.
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Inside the brackets are the g of the manifold in the

neighbourhood of the origin. Since the first derivatives

of the gM> ,
and therefore also the T",, vanish at the origin,

the calculation of the R„, for this manifold, by (88), is very

simple at the origin. We have

2 _ 2

Since the relation R „„
= — ~

2
is generally co-variant,

and since all points of the manifold are geometrically

equivalent, this relation holds for every system of co-

ordinates, and everywhere in the manifold. In order to

avoid confusion with the four-dimensional continuum, we

shall, in the following, designate quantities that refer to

the three-dimensional continuum by Greek letters, and put

(120) P„. =

We now proceed to apply the field equations (96) to

our special case. From (119) we get for the four-dimen-

sional manifold,

( 121 )

I R„„ = P„„ for the indices 1 to 3

|
Ru ~ Rii = Rsi = R

a

= 0

For the right-hand side of (96) we have to consider the

energy tensor for matter distributed like a cloud of dust.

According to what has gone before we must therefore put

7*’ =
dx„ dx,

a
ds ds

specialized for the case of rest. But in addition, we shall

add a pressure term that may be physically established as

[
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follows. Matter consists of electrically charged particles.

On the basis of Maxwell’s theory these cannot be con-

ceived of as electromagnetic fields free from singularities.

In order to be consistent with the facts, it is necessary to

introduce energy terms, not contained in Maxwell’s theory,

so that the single electric particles may hold together in

spite of the mutual repulsions between their elements,

charged with electricity of one sign. For the sake of

consistency with this fact, Poincare has assumed a pressure

to exist inside these particles which balances the electro-

static repulsion. It cannot, however, be asserted that this

pressure vanishes outside the particles. We shall be con-

sistent with this circumstance if, in our phenomenological

presentation, we add a pressure term. This must not,

however, be confused with a hydrodynamical pressure, as

it serves only for the energetic presentation of the dynamical

relations inside matter. Accordingly we put

( 122 ) ~ Z»’P'

In our special case we have, therefore, to put

T„, = y„,p (for ju and v from 1 to 3)

T44 — a — p
T = —Y’y^P 4- <r — p = a — Ap.

Observing that the field equation (96) may be written in

the form

R,. = -k(T„ - ig^.T)

we get from (96) the equations,
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From this follows

(123)

If the universe is quasi-Euclidean, and its radius of

curvature therefore infinite, then a would vanish. But it

is improbable that the mean density of matter in the

universe is actually zero; this is our third argument against

the assumption that the universe is quasi-Euclidean. Nor
does it seem possible that our hypothetical pressure can

vanish; the physical nature of this pressure can be appreci-

ated only after we have a better theoretical knowledge of

the electromagnetic field. According to the second of

equations (123) the radius, a, of the universe is determined

in terms of the total mass, M, of matter, by the equation

The complete dependence of the geometrical upon the

physical properties becomes clearly apparent by means of

this equation.

Thus we may present the following arguments against

the conception of a space-infinite, and for the conception

of a space-bounded, or closed, universe:

—

1 . From the standpoint of the theory of relativity, to postu-

late a closed universe is very much simpler than to postulate

the corresponding boundary condition at infinity of the

quasi-Euclidean structure of the universe.

2. The idea that Mach expressed, that inertia depends

upon the mutual action of bodies, is contained, to a first

approximation, in the equations of the theory of relativity;
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it follows from these equations that inertia depends, at

least in part, upon mutual actions between masses. Thereby

Mach’s idea gains in probability, as it is an unsatisfactory

assumption to make that inertia depends in part upon

mutual actions, and in part upon an independent property

of space. But this idea of Mach’s corresponds only to a

finite universe, bounded in space, and not to a quasi-

Euclidean, infinite universe. From the standpoint of

epistemology it is more satisfying to have the mechanical

properties of space completely determined by matter, and

this is the case only in a closed universe.

3. An infinite universe is possible only if the mean density

of matter in the universe vanishes. Although such an

assumption is logically possible, it is less probable than the

assumption that there is a finite mean density of matter in

the universe.
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FOR THE SECOND EDITION

ON THE “COSMOLOGIC PROBLEM”

S
INCE the first edition of this little book some advances

have been made in the theory of relativity, Some of

these we shall mention here only briefly:

The first step forward is the conclusive demonstration

of the existence of the red shift of the spectral lines by the

(negative) gravitational potential of the place of origin

(see p. 92). This demonstration was made possible by

the discovery of so-called “dwarf stars” whose average

density exceeds that of water by a factor of the order 10 4
.

For such a star (e.g. the faint companion of Sirius), whose

mass and radius can be determined,* this red shift was

expected, by the theory, to be about 20 times as large as

for the sun, and indeed it was demonstrated to be within

the expected range.

A second step forward, which will be mentioned briefly,

concerns the law of motion of a gravitating body. In the

initial formulation of the theory the law of motion for a

gravitating particle was introduced as an independent

fundamental assumption in addition to the field law of

gravitation—see Eq. 90 which asserts that a gravitating

particle moves in a geodesic line. This constitutes a

* The mass is derived from the reaction on Sirius by spectroscopic means,

using the Newtonian laws; the radius is derived from the total lightness and

from the intensity of radiation per unit area, which may be derived from the

temperature of its radiation.
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hypothetic translation of Galileo’s law of inertia to the

case of the existence of “genuine” gravitational fields.

It has been shown that this law of motion—generalized

to the case of arbitrarily large gravitating masses—can be

derived from the field-equations of empty space alone.

According to this derivation the law of motion is implied

by the condition that the field be singular nowhere out-

side its generating mass points.

A third step forward, concerning the so-called “cosmo-

logic problem,” will be considered here in detail, in part

because of its basic importance, partly also because the

discussion of these questions is by no means concluded.

I feel urged toward a more exact discussion also by the

fact that I cannot escape the impression that in the present

treatment of this problem the most important basic points

of view are not sufficiently stressed.

The problem can be formulated roughly thus: On
account of our observations on fixed stars we are sufficiently

convinced that the system of fixed stars does not in the

main resemble an island which floats in infinite empty

space, and that there does not exist anything like a center

of gravity of the total amount of existing matter. Rather,

we feel urged toward the conviction that there exists an

average density of matter in space which differs from zero.

Hence the question arises: Can this hypothesis, which is

suggested by experience, be reconciled with the general

theory of relativity?

First we have to formulate the problem more precisely.

Let us consider a finite part of the universe which is large

enough so that the average density of matter contained in

it is an approximately continuous function of (*i, *2, *3, *4).

Such a subspace can be considered approximately as an

inertial system (Minkowski space) to which we relate the
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motion of the stars. One can arrange it so that the mean

velocity of matter relative to this system shall vanish in all

directions. There remain the (almost random) motions of

the individual stars, similar to the motions of the molecules

of a gas. It is essential that the velocities of the stars are

known by experience to be very small as compared to the

velocity of light. It is therefore feasible for the moment

to neglect this relative motion completely, and to consider

the stars replaced by material dust without (random)

motion of the particles against each other.

The above conditions are by no means sufficient to make

the problem a definite one. The simplest and most

radical specialization would be the condition: The (natu-

rally measured) density, p of matter is the same everywhere

in (four-dimensional) space, the metric is, for a suitable

choice of coordinates, independent of x t and homogeneous

and isotropic with respect to xh x3 ,
x3 .

It is this case which I at first considered the most natural

idealized description of physical space in the large; it is

treated on pages 103—108 of this book. The objection

to this solution is that one has to introduce a negative

pressure, for which there exists no physical justification.

In order to makfe that solution possible I originally intro-

duced a new member into the equation instead of the

above mentioned pressure, which is permissible from the

point of view of relativity. The equations of gravitation

thus enlarged were:

(1) (Rik — igikR) + AgH + uTik = 0

where A is a universal constant (“cosmologic constant”).

The introduction of this second member constitutes a

complication of the theory, which seriously reduces its

logical simplicity. Its introduction can only be justified
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by the difficulty produced by the almost unavoidable
introduction of a finite average density of matter. We may
remark, by the way, that in Newton’s theory there exists

the same difficulty.

The mathematician Friedman found a way out of this

dilemma. * His result then found a surprising confirma-
tion by Hubble’s discovery of the expansion of the stellar

system (a red shift of the spectral lines which increases

uniformly with distance). The following is essentially

nothing but an exposition of Friedman’s idea:

FOUR-DIMENSIONAL SPACE

WHICH IS ISOTROPIC WITH RESPECT TO
THREE DIMENSIONS

We observe that the systems of stars, as seen by us, are

spaced with approximately the same density in all direc-

tions. Thereby we are moved to the assumption that the

spatial isotropy of the system would hold for all observers,

for every place and every time of an observer who is at

rest as compared with surrounding matter. On the other
hand we no longer make the assumption that the average
density of matter, for an observer who is at rest relative

to neighboring matter, is constant with respect to time.

With this we drop the assumption that the expression of the

metric field is independent of time.

We now have to find a mathematical form for the con-
dition that the universe, spatially speaking

,
is isotropic

everywhere. Through every point P of (four-dimensional)

space there is the path of a particle (which in the following

will be called “geodesic” for short). Let P and Q. be two

* He showed that it is possible, according to the field equations, to have a
finite density in the whole (three-dimensional) space, without enlarging
these field equations ad hoc. Zeitschr. f. Phys. 10 (1922).
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infinitesimally near points of such a geodesic. We shall

then have to demand that the expression of the field

shall be invariant relative to any rotation of the coordinate

system keeping P and Q. fixed. This will be valid for any

element of any geodesic.*

The condition of the above invariance implies that

the entire geodesic lies on the axis of rotation and that its

points remain invariant under rotation of the coordinate

system. This means that the solution shall be invariant

with respect to all rotations of the coordinate system around

the triple infinity of geodesics.

For the sake of brevity I will not go into the deductive

derivation of the solution of this problem. It seems

intuitively evident, however, for the three-dimensional

space that a metric which is invariant under rotations

around a double infinity of lines will be essentially of the

type of central symmetry (by suitable choice of coordinates),

where the axes of rotations are the radial straight lines,

which by reasons of symmetry are geodesics. The surfaces

of constant radius are then surfaces of constant (positive)

curvature which are everywhere perpendicular to the

(radial) geodesics. Hence we obtain in invariant language:

There exists a family of surfaces orthogonal to the

geodesics. Each of these surfaces is a surface of constant

curvature. The segments of these geodesics contained

between any two surfaces of the family are equal.

Remark. The case which has thus been obtained

intuitively is not the general one in so far as the surfaces

of the family could be of constant negative curvature or

Euclidean (zero curvature).

* This condition not only limits the metric, but it necessitates that for

every geodesic there exist a system ot coordinates such that relative to this

system the invariance under rotation around this geodesic is valid.
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The four-dimensional case which interests us is entirely

analogous. Furthermore there is no essential difference

when the metric space is of index of inertia 1 ; only that

one has to choose the radial directions as timelike and
correspondingly the directions in the surfaces of the family

as spacelike. The axes of the local light cones of all points

lie on the radial lines.

CHOICE OF COORDINATES

Instead of the four coordinates for which the spatial

isotropy of the universe is most clearly apperent, we now
choose different coordinates which are more convenient

from the point of view of physical interpretation.

As timelike lines on which x\, x3 ,
X3 are constant and

alone variable we choose the particle geodesics which in the

central symmetric form are the straight lines through

the center. Let further equal the metric distance from
the center. In such coordinates the metric is of the form:

f ds2 = dx4
2 — da 2

(2) ( da
2 = 7adxidxk (i, k = 1, 2, 3)

da 2
is the metric on one of the spherical hypersurfaces.

The 7,jt which belong to different hypersurfaces will then

(because of the central symmetry) be the same form on all

hypersurfaces except for a positive factor which depends
on x\ alone:

(2a) 7,* = 7ikG2

0

where the 7 depend on xi, x2 ,
x 3 only, and G is a function of

0

xa alone. We have then:

(2b) da s = yikdxidxk ( i

,

£ = 1,2, 3)
0 0
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is a definite metric of constant curvature in three dimen-

sions, the same for every G.

Such a metric is characterized by the equations:

(2c) Biklm ^{'yil'y(m 7in7kl )
~ 0

0 0 0 0 0

We can choose the coordinate system (*i, x2 ,
x3 ) so that the

line element becomes conformally Euclidean:

(2d) da 2 = A 2{dx \
2 + dx3

2 + dx 3
2
) i.e. 7,t

=
o o

where A shall be a positive function of r(r = x \

2 + x-? + x 3
2
)

alone. By substitution into the equations, we get for A the

two equations:

The first equation is satisfied by:

(3a) A = Cl

c3 + c3r
2

where the constants are arbitrary for the time being.

The second equation then yields:

(3b) B
ClC3

C \

2

About the constants c we get the following: If for r = 0,

A shall be positive, then Ci and c3 must have the same sign.

Since a change of sign of all three constants does not change

A, we can make c i and c3 both positive. We can also

make c3 equal to 1. Furthermore, since a positive factor
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can always be incorporated into the G 2

,
we can also make

c i equal to 1 without loss of generality. Hence we can set:

(3c) A = 1

1 + a 2 ’
B = 4c

There are now three cases:

c > 0 (spherical space)

c < 0 (pscudospherical space)

c = 0 (Euclidean space)

By a similarity transformation of coordinates (*,' = ax<,

where a is constant), we can further get in the first case

c = j, in the second case c = — J.

For the three cases we then have respectively:

= ml

= -1

In the spherical case the “circumference” of the unit space

dr
(G - 1) is [ +;

= 2ir, the “radius” of the unit

space is 1. In all three cases the function G of time is a
measure for the change with time of the distance of two
points of matter (measured on a spatial section). In the

spherical case, G is the radius of space at the time *«.

Summary. The hypothesis of spatial isotropy of our
idealized universe leads to the metric:
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(2) ds 2 = dx4
2 - G2A\dXl 2 + dxS + dx 3

2
)

where G depends on xt alone, ^ on r
(
= *i

2 + Xi
2 + x 3

2
)

alone, where:

(3) A = —
1 + Jr’

and the different cases are characterized by z — 1, z — — 1,

and z — 0 respectively.

THE FIELD EQUATIONS

We must now further satisfy the field equations of gravi-

tation, that is to say the field equations without the “cos-

mologic member” which had been introduced previously

ad hoc:

(4 ) {Rik ~ hgaR) + *Tik = 0

By substitution of the expression for the metric, which
was based on the assumption of spatial isotropy, we get

after calculation:

Further we have for Ta, the energy tensor of matter,

for “dust”:

Tik = n
dxi dXk

ds ds

[ 117
]

(4b)



APPENDIX FOR THE SECOND EDITION

The geodesies, along which the matter moves, are the

lines along which xt alone varies; on them dx4 = ds. We
have:

(4c) Tu = p

the only component different from zero. By lowering

of the indices we get as the only non-vanishing component

of Tit :

(4d) Tu = P

Considering this, the field equations are:

(5 )

JL + 911 + 2 — = 0
G ! T G* ^ G

s. , 92 _ 1 _ n
G 2 + g 2

2>

Kp 0

Q 2 is the curvature in the spatial section xt = const.

Since G is in all cases a relative measure for the metric

distance of two material particles as function of time,

G'
-q expresses Hubble’s expansion. A drops out of the

equations, as it has to if there shall be solutions of the

equations of gravity of the required symmetrical type.

By subtraction of both equations we get:

C" 1

(5a) -£ + £
xp = 0

Since G and p must be everywhere positive, G" is every-

where negative for nonvanishing p. G(x«) can thus have

no minimum nor a point of inflection; further there is no

solution for which G is constant.
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THE SPECIAL CASE OF VANISHING

SPATIAL CURVATURE (z = 0)

The simplest special case for non-vanishing density p
is the case z = 0, where the sections = const are not

G'
curved. If we set -q — h, the field equations in this case

are:

(5b) J
2h! + 3/r

2 = 0

1 3h 2 = /cp

The relation between Hubble’s expansion h and the

average density p, which is given in the second equation, is

comparable to some extent with experience, at least as

far as the or der of magnitude is concerned. The expansion

is given as 432 km/sec for the distance of 10 6 parsec.

If we express this in the system of measures used by us

(cm—as unit length; unit of time—that of motion of light

of one cm) we get:

1

3 • 10 10
h = 432 • 10 s

3.25 -10 6
- 365 -24 -60 -60 ( )

2

= 4.71 • 10" 28
.

Since further (see 105a) k = 1.86 10 27
,
the second equa-

tion of (5b) yields:

2,h
2

p = — = 3.5 • 10 28 g./cm. 3

This value corresponds, according to the order of magni-

tude, somewhat with the estimates given by astronomers

(on the basis of the masses and par allaxes of visible stars and

systems of stars). I quote here as example G. C. McVittie

(Proceedings of the Physical Society of London, vol. 51,

1939, p. 537): “The average density is certainly not
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greater than 10~ 27 g./cm. 3 and is more probably of the

order 10
-29 g./cm. 3”

Owing to the great difficulty of determining this magni-

tude I consider this for the time being a satisfactory

correspondence. Since the quantity h is determined with

greater accuracy than p, it is probably not an exaggeration

to assert that the determination of the structure of observ-

able space is tied up with the more precise determination

of p. Because, due to the second equation of (5), the

space curvature is given in the general case as:

(5c) zG~ 2 = i«p — h 2
.

Hence, if the right side of the equation is positive, the space

is of positive constant curvature and therefor finite; its

magnitude can be determined with the same accuracy

as this difference. If the right side is negative, the space

is infinite. At present p is not sufficiently determined to

enable us to deduce from this relation a non-vanishing

mean curvature of space (the section x4 = const).

In case we neglect spatial curvature, the first equation

of (5c) becomes, after suitable choice of the initial point

of Xi'.

(6 ) h
2 J_
3 x 4

This equation has a singularity for x4 = 0, so that such a

space has either a negative expansion and the time is limited

from above by the value x4 = 0, or it has a positive expan-

sion and begins to exist for xt = 0. The latter case

corresponds to what we find realized in nature.

From the measured value of h we get for the time of

existence of the world up to now 1.5 • 10 9 years. This age

is about the same as that which one has obtained from the

[
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disintegration of uranium for the firm crust of the earth.

This is a paradoxical result, which for more than one

reason has aroused doubts as to the validity of the theory.

The question arises: Can the present difficulty, which

arose under the assumption of a practically negligible

spatial curvature, be eliminated by the introduction of a

suitable spatial curvature? Here the first equation of (5),

which determines the time-dependence of G, will be of use.

SOLUTION OF THE EQUATIONS

IN THE CASE OF NON-VANISHING SPATIAL CURVATURE

If one considers a spatial curvature of the spatial section

{x t = const), one has the equations:

( 5 )

The curvature is positive lor z — +1, negative for z — — 1.

The first of these equations is integrable. We first write it

it in the form:

(5d) Z + 2GG" + G' 2 = 0.

If we consider v4 (= /) as a function of G, we have:

If we write u(G) for we get:

(5e) Z + 2Guu' u 2 — 0

or

(50 4 + (iGu 2)' = 0.
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From this we get by simple integration:

(5g) zG + Gu 2 = Go

(5h)

_1

dt_

dG

<dl
.dt

dG
dt

Go
— zG

where Go is a constant. This constant cannot be negative,

as we see if we differentiate (5h) and consider that G" is

negative because of (5a).

(a) Space with positive curvature

G remains in the interval 0 < G < G0 . G is given
quantitatively by a sketch like the following:

The radius G rises from 0 to G0 and then again drops
continuously to 0. The spatial section is finite (spherical)

(5c) — h1 > 0

(b) Space with negative curvature

/dGY1

_ G0 + G
\dt) G
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G increases with t from G = 0 to G = + 00 (or goes from

X
dG

G = oo to G = 0). Hence decreases monotonically

from +oo to 1 as illustrated by the sketch:

This is then a case of continued expansion with no con-

traction. The spatial section is infinite, and we have:

(5c) %Kp — A 2 < 0.

The case of plane spatial section, which was treated in

the previous section, lies between these two cases, accord-

ing to the equation:

Remark. The case of negative curvature contains as a

(dG\ 2

limiting case that of vanishing p. For this case l 1 = 1

(see sketch 2). This is the Euclidean case; since the

calculations show that the curvature tensor vanishes.

The case of negative curvature with non-vanishing p

approaches this limiting case more and more closely, so
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that with increasing time the structure of space will be less

and less determined by the matter contained in it.

From this investigation of the case of non-vanishing

curvature results the following. For every state of non-
vanishing (“spatial”) curvature, there exists, as in the

case of vanishing curvature, an initial state in which
G = 0 where the expansion starts. Hence this is a section

at which the density is infinite and the field is singular.

The introduction of such a new singularity seems problem-
atical in itself.*

It appears, further, that the influence of the introduction

of a spatial curvature on the time interval between the

G'
start of the expansion and the drop to a fixed value h = -q

is negligible in its order of magnitude. This time interval

may be obtained by elementary calculations from (5h),

which we shall omit here. We restrict ourselves to the con-

sideration of an expanding space with vanishing p. This,

as mentioned before, is a special case of negative spatial

curvature. The second equation of (5) yields (considering

the reversal of sign of the first member)

:

G' = 1.

Hence (for suitable initial point for *4 )

G = Xi

Hence this extreme case yields for the duration of the

expansion the same result as the case of vanishing spatial

* However, the following should be noted: The present relativistic theory
of gravitation is based on a separation ol the concepts of “gravitational field”
and of “matter.” It may be plausible that the theory is for this reason
inadequate for very high density of matter. It may well be the case that
for a unified theory there would arise no singularity.
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curvature (see Eq. 6) except for a factor of order of magni-

tude 1.

The doubts mentioned in connection with Eq. (6),

namely that this would give such a remarkably short

duration for the development of the stars and systems of

stars which are observable at present, cannot therefore be

removed by the introduction of a spatial curvature.

EXTENSION OF THE ABOVE CONSIDERATIONS

BY GENERALIZATION OF THE EQUATION WITH RESPECT

TO PONDERABLE MATTER

For all the solutions reached up to now, there exists a

state of the system at which the metric becomes singular

(.

G

= 0) and the density p becomes infinite. The following

question arises: Could not the rise of such singularities be

due to the fact that we introduced matter as a kind of

dust which does not resist condensation? Did we not

neglect, without justification, the influence of the random

motion of the single stars?

One could, for example, replace dust whose particles

are at rest relative to each other, by one whose particles

are in random motion relative to each other like the mole-

cules of a gas. Such matter would offer a resistance to

adiabatic condensation which increases with that con-

densation. Will not this be able to prevent the rise of

infinite condensation? We shall show below that such a

modification in the description of matter can change

nothing of the main character of the above solutions.

“PARTICLE-GAS” TREATED ACCORDING

TO SPECIAL RELATIVITY

We consider a swarm of particles of mass m in parallel

motion. By a proper transformation this swarm can be

[
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considered at rest. The spatial density of the particles, <r,

is then invariant in the Lorentz sense. Related to an
arbitrary Lorentz system

(7) T-uv
dxU dx"

ds ds

has invariant meaning (energy tensor of the swarm). If

there exist many such swarms we get, by summation, for

all of them:

P

In relation to this form we can choose the time axis of the
Lorentz system so that: T14 = T24 = T34 = 0. Further,
we can obtain by spatial rotation of the system: T12 = T23

= T31 = 0- Let, further, the particle gas be isotropic.

This means that Tn = T22 = T33 = p. This is an
invariant as well as T44 = u. The invariant:

(7b) J = Tu"guv = Tu - (Tn + T22 + T33
) = u -3p

is thus expressed in terms of u and p.

It follows from the expression for Tuv that Tu
, 722

,
T33

and T44 are all positive; hence the same is true for Tn ,
Tu ,

7*33) Tu.

The equations of gravity are now:

(8) 1 +2GG" +G* +kTu = 0

-3CT 2
(1 4-G' 2

) + kTu = 0.

From the first it follows that here too (since Tn >0) G"
is always negative where the member Tn for given G and
G' can only decrease the value of G"

.
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From this we see that the consideration of a random

relative motion of the mass points does not change our

results fundamentally.

SUMMARY AND OTHER REMARKS

(1) The introduction of the ‘‘cosmologic member” into

the equations of gravity, though possible from the point of

view of relativity, is to be rejected from the point of view

of logical economy. As Friedman was the first to show

one can reconcile an everywhere finite density of matter

with the original form of the equations of gravity if one

admits the time variability of the metric distance of two

mass points.
*

(2) The demand for spatial isotropy of the universe

alone leads to Friedman’s form. It is therefore undoubt-

edly the general form, which fits the cosmologic problem.

(3) Neglecting the influence of spatial curvature, one

obtains a relation between the mean density and Hubble’s

expansion which, as to order of magnitude, is confirmed

empirically.

One further obtains, for the time from the start of the

expansion up to the present, a value of the order of magni-

tude of 10 9 years. The brevity of this time does not

concur with the theories on the developments of fixed

stars.

(4) The latter result is not changed by the introduction

of spatial curvature; nor is it changed by the consideration

of the random motion of stars and systems of stars with

respect to each other.

* If Hubble’s expansion had been discovered at the time of the creation

of the general theory of relativity, the cosmologic member would never have

been introduced. It seems now so much less justified to introduce such a

member into the field equations, since its introduction loses its sole original

justification,—that of leading to a natural solution of the cosmologic problem.
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(5) Some try to explain Hubble’s shift of spectral lines

by means other than the Doppler effect. There is, how-
ever, no support for such a conception in the known
physical facts. According to such a hypothesis it would
be possible to connect two stars, Sx and S2 , by a rigid
rod. Monochromatic light which is sent from S, to S2
and reflected back to Si could arrive with a different
frequency (measured by a clock on S x ) if the number of
wave lengths of light along the rod should change with
time on the way. This would mean that the locally
measured velocity of light would depend on time, which
would contradict even the special theory of relativity.
Further it should be noted that a light signal going to and
fro between Si and S2 would constitute a “clock” which
would not be in a constant relation with a clock (e.g. an
atomistic clock) in Si. This would mean that there would
exist no metric in the sense of relativity. This not only
involves the loss of comprehension of all those relations
which relativity has yielded, but it also fails to concur
with the fact that certain atomistic forms are not related
by “similarity” but by “congruence” (the existence of
sharp spectral lines, volumes of atoms, etc.).

The above considerations are, however, based on wave
theory, and it may be that some proponents of the above
hypothesis imagine that the process of the expansion of
light is altogether not according to wave theory, but rather
m a manner analogous to the Compton effect. The
assumption of such a process without scattering constitutes
a hypothesis which is not justified from the point of view
of our present knowledge. It also fails to give a reason
for the independence of the relative shift of frequence from
the original frequency. Hence one cannot but consider
Hubble’s discovery as an expansion of the system of stars.
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(6) The doubts about the assumption of a “beginning

of the world” (start of the expansion) only about 10 9

years ago have roots of both an empirical and a theoretical

nature. The astronomers tend to consider the stars of

different spectral types as age classes of a uniform develop-

ment, which process would need much longer than 10 9

years. Such a theory therefore actually contradicts the

demonstrated consequences of the relativistic equations.

It seems to me, however, that the “theory of evolution”

of the stars rests on weaker foundations than the field

equations.

The theoretical doubts are based on the fact that for the

time of the beginning of the expansion the metric becomes

singular and the density, p, becomes infinite. In this

connection the following should be noted: The present

theory of relativity is based on a division of physical

reality into a metric field (gravitation) on the one hand,

and into an electromagnetic field and matter on the other

hand. In reality space will probably be of a uniform

character and the present theory be valid only as a limiting

case. For large densities of field and of matter, the field

equations and even the field variables which enter into

them will have no real significance. One may not there-

fore assume the validity of the equations for very high

density of field and of matter, and one may not conclude

that the “beginning of the expansion” must mean a singu-

larity in the mathematical sense. All we have to realize is

that the equations may not be continued over such regions.

This consideration does, however, not alter the fact that

the “beginning of the world” really constitutes a beginning,

from the point of view of the development of the now exist-

ing stars and systems of stars, at which those stars and

systems of stars did not yet exist as individual entities.
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(7) There are, however, some empirical arguments in

javor of a dynamic concept of space as required by the
theory. Why does there still exist uranium, despite its

comparatively rapid decomposition, and despite the fact

that no possibility for the creation of uranium is recog-
nizable? Why is space not so filled with radiation as to

make the nocturnal sky look like a glowing surface? This
is an old question which so far has found no satisfactory

answer from the point of view of a stationary world. But
it would lead too far to go into questions of this type.

(8) For the reasons given it seems that we have to take
the idea of an expanding universe seriously, in spite of the
short “lifetime.” If one does so, the main question
becomes whether space has positive or negative spatial

curvature. To this we add the following remark.
From the empirical point of view the decision boils down

to the question whether the expression £fcp — h 2
is positive

(spherical case) or negative (pseudospherical case). This
seems to me to be the most important question. An
empirical decision does not seem impossible at the present
state of astronomy. Since h (Hubble’s expansion) is

comparatively well known, everything depends on deter-
mining p with the highest possible accuracy.

It is imaginable that the proof would be given that the
world is spherical (it is hardly imaginable that one could
prove it to be pseudospherical). This depends on the
fact that one can always give a lower bound for p but not
an upper bound. This is the case because we can hardly
form an opinion on how large a fraction of p is given by
astronomically unobservable (not radiating) masses. This
I wish to discuss in somewhat greater detail.

One can give a lower bound for p (p,) by taking into
consideration only the masses of radiating stars. If it
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3A 2

should appear that p, > — then one would have decided

3A 2

in favor of spherical space. If it appears that p, < —
one has to try to determine the share of non-radiating

masses pi. We want to show that one can also find a

lower bound for
Ps

We consider an astronomical object which contains many

single stars and which can be considered with sufficient

accuracy to be a stationary system, e.g. a globular cluster

(of known parallax). From the velocities which are

observable spectroscopically one can determine the field of

gravitation (under plausible assumptions) and thereby the

masses which generate this field. The masses which are

so computed one can compare with those of the visible

stars of the cluster, and so find at least a rough approxima-

tion for how far the masses which generate the field exceed

those of the visible stars of the cluster. One obtains thus

an estimate for ^ for the particular cluster.

Since the non-radiating stars will on the average be

smaller than the radiating ones, they will tend on the

average to greater velocities than the larger stars due to

their interaction with the stars of the cluster. Hence

they will “evaporate” more quickly from the cluster than

the larger stars. It may therefore be expected that the

relative frequency of the smaller heavenly bodies inside

the cluster will be smaller than that outside of it. One

(relation of densities in the

above cluster) a lower bound for the ratio — in the whole

[
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space. One therefore obtains as a lower bound for the

entire average density of mass in space:

If this quantity is greater than —- one may conclude that

space is of a spherical character. On the other hand I

cannot think of any reasonably reliable determination of

an upper bound for p.

(9) Last and not least: The age of the universe, in the

sense used here, must certainly exceed that of the firm

crust of the earth as found from the radioactive minerals.

Since determination of age by these minerals is reliable

in every respect, the cosmologic theory here presented

would be disproved if it were found to contradict any such
results. In this case I see no reasonable solution.
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RELATIVISTIC THEORY OF THE
NON-SYMMETRIC FIELD

BEFORE starting with the subject proper I am first going

to discuss the “strength” of systems of field equations in

general. This discussion is of intrinsic interest quite apart

from the particular theory presented here. For a deeper

understanding of our problem, however, it is almost

indispensable.

ON THE “COMPATIBILITY” AND THE “STRENGTH” OF

SYSTEMS OF FIELD EQUATIONS

Given certain field variables and a system of field equa-

tions for them, the latter will not in general determine the

field completely. There still remain certain free data for

a solution of the field equations. The smaller the number

of free data consistent with the system of field equations,

the “stronger” is the system. It is clear that in the absence

of any other viewpoint from which to select the equations,

one will prefer a “stronger” system to a less strong one. It

is our aim to find a measure for this strength of systems of

equations. It will turn out that such a measure can be

defined which will even enable us to compare with each

other the strengths of systems whose field variables differ

with respect to number and kind.

We shall present the concepts and methods involved here

in examples of increasing complexity, restricting ourselves to

four-dimensional fields, and in the course of these examples

we shall successively introduce the relevant concepts.
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First example : The scalar wave equation*

^,11 + ^,22 + </>,33
—

<t>M = 0 -

Here the system consists of only one differential equation
for one field variable. We assume <j> to be expanded in a
Taylor series in the neighborhood of a point P (which
presupposes the analytic character of <j>). The totality of
its coefficients describes then the function completely. The
number of nth order coefficients (that is, the nth order deri-

vatives of cf> at the point P) is equal to ^ ^ (
n + 3)

^abbreviated
j,

and all these coefficients could be freely

chosen if the differential equation did not imply certain

relations between them. Since the equation is of second
order, these relations are found by (n — 2) fold differenti-

ation of the equation. We thus obtain for the nth order

coefficients

^
conditions. The number of nth order

coefficients remaining free is therefore

<)

This number is positive for any n. Hence, if the free

coefficients for all orders smaller than n have been fixed,

the conditions for the coefficients of order n can always be
satisfied without changing the coefficients already chosen.

Analogous reasoning can be applied to systems consisting

of several equations. If the number of free nth order
coefficients does not become smaller than zero, we call

the system of equations absolutely compatible. We shall

* In the following the comma will always denote partial differentiation;

thus, for example, <ji,,
^ ^ ^

dx * dx1 dx1
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restrict ourselves to such systems of equations. All systems

known to me which are used in physics are of this kind.

Let us now rewrite equation (1). We have

/ 4 \ / 4\ (n — l)ra

Vra — 2/ Ira/ (n + 2) (ra + 3)
*+3 + -)
n nr /

where Z\ = +6.

If we restrict ourselves to large values of ra, we may neglect

the terms % etc. in the parenthesis, and we obtain for (1)

asymptotically

V
nj n

4\6

n! n
(la)

We call Z\ the “coefficient of freedom,” which in our case

has the value 6. The larger this coefficient, the weaker is

the corresponding system of equations.

Second example : Maxwell's equationsfor empty space

ft
8

.*
— 0

; ftk.l + ftl.i + fti.k
— 0 .

results from the antisymmetric tensor ftk by raising the

covariant indices with the help of

These are 4+4 field equations for six field variables.

Among these eight equations, there exist two identities. If

the left-hand sides of the field equations are denoted by Gl

and Hm respectively, the identities have the form

G
\i
== 0 j Hkim.i ^ •

In this case we reason as follows.

[
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The Taylor expansion of the six field components furnishes

coefficients of the nth order. The conditions that these nth

order coefficients must satisfy are obtained by (n — l)fold

differentiation of the eight field equations of the first order.

The number of these conditions is therefore

These conditions, however, are not independent of each
other, since there exist among the eight equations two
identities of second order. They yield upon (n — 2) fold

differentiation

2 (»- 2)

algebraic identities among the conditions obtained from the

field equations. The number of free coefficients of «th

order is therefore

£ is positive for all n. The system of equations is thus

“absolutely compatible.” If we extract the factor on

the right-hand side and expand as above for large n, we
obtain asymptotically
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Here, then, Z\ = 12. This shows that—and to what extent

—this system of equations determines the field less strongly

than in the case of the scalar wave equation (^;1 = 6).

The circumstance that in both cases the constant term in

the parenthesis vanishes expresses the fact that the system

in question does not leave free any function of four variables.

Third example: The gravitational equations for empty space.

We write them in the form

Sik,l Ssk 1 '/ Sis 1 'ik * d*

The Rik
contain only the T and are of first order with respect

to them. We treat here the g and T as independent field

variables. The second equation shows that it is convenient

to treat the F as quantities of the first order of differentiation,

which means that in the Taylor expansion

r = r + r, + r
s(

** + . .

.

0 1 2

we consider T to be of the first order, r
s
of the second

o 1

order, and so on. Accordingly, the Rik must be considered

as of second order. Between these equations, there exist

the four Bianchi identities which, as a consequence of the

convention adopted, are to be considered as of third order.

In a generally covariant system of equations a new

circumstance appears which is essential for a correct

enumeration of the free coefficients: fields that result from

one another by mere coordinate transformations should be

considered only as different representations of one and the

same field. Correspondingly, only part of the

/4\
10

\nj

rcth order coefficients of the gik serves to characterize essenti-

ally different fields. Therefore, the number of expansion
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coefficients that actually determine the field is reduced by
a certain amount which we must now compute.

In the transformation law for the gik ,

*
dJ_

Sik ~
dx1 ' dxk

* gab

gab and gi
* represent in fact the same field. If this equation

is differentiated n times with respect to the x*, one notices

that all (n + l)st derivatives of the four functions x with

respect to the x* enter into the nth order coefficients of the

^-expansion; i.e., there appear 4 ^ numbers that

have no part in the characterization of the field. In any
general-relativistic theory one must therefore subtract

4 ^ + j j

from the total number of nth order coefficients

so as to take account of the general covariance of the theory.

The enumeration of the free coefficients of nth order leads

thus to the following result.

The ten gik (quantities of zero order of differentiation)

and the forty T^ (quantities of first order of differentiation)

yield in view of the correction just derived

,0
(»)

+ 40 („-i)
- 4

(„ + i)

relevant coefficients of nth order. The field equations (10
of the second and 40 of the first order) furnish for them

* = I0 („-2)+ 4°(„l,)

conditions. From this number, however, we must subtract
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the number of the identities between these N conditions, viz.

which result from the Bianchi identities (of the third order)

.

Hence we find here

<=K) +4# (»-i)- 4
(»+.I

-[ 10 („-2)+ 40 (,-l)]+ 4 (»-3)-

Extracting again the factor
( | we obtain asymptotically

for large n

(M- Thus ^ = 12.

Here, too, z is positive for all n so that the system is absolutely

compatible in the sense of the definition given above. It

is surprising that the gravitational equations for empty

space determine their field just as strongly as do Maxwell’s

equations in the case of the electromagnetic field.

RELATIVISTIC FIELD THEORY

General remarks

It is the essential achievement of the general theory of

relativity that it has freed physics from the necessity of

introducing the “inertial system” (or inertial systems).

This concept is unsatisfactory for the following reason:

without any deeper foundation it singles out certain co-

ordinate systems among all conceivable ones. It is then

assumed that the laws of physics hold only for such inertial

systems (e.g. the law of inertia and the law of the constancy
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of the velocity of light) . Thereby, space as such is assigned

a role in the system of physics that distinguishes it from all

other elements of physical description. It plays a deter-

mining role in all processes, without in its turn being influ-

enced by them. Though such a theory is logically possible,

it is on the other hand rather unsatisfactory. Newton had
been fully aware of this deficiency, but he had also clearly

understood that no other path was open to physics in his

time. Among the later physicists it was above all Ernst

Mach who focussed attention on this point.

What innovations in the post-Newtonian development of

the foundations of physics have made it possible to over-

come the inertial system? First of all, it was the intro-

duction of the field concept by, and subsequent to, the

theory of electromagnetism of Faraday and Maxwell, or

to be more precise, the introduction of the field as an
independent, not further reducible fundamental concept.

As far as we are able to judge at present, the general theory

of relativity can be conceived only as a field theory. It

could not have developed if one had held on to the view

that the real world consists of material points which move
under the influence of forces acting between them. Had
one tried to explain to Newton the equality of inertial and
gravitational mass from the equivalence principle, he would
necessarily have had to reply with the following objection:

it is indeed true that relative to an accelerated coordinate

system bodies experience the same accelerations as they do
relative to a gravitating celestial body close to its surface.

But where are, in the former case, the masses that produce

the accelerations? It is clear that the theory of relativity

presupposes the independence of the field concept.

The mathematical knowledge that has made it possible
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to establish the general theory of relativity we owe to the

geometrical investigations of Gauss and Riemann. The

former has, in his theory of surfaces, investigated the metric

properties of a surface imbedded in three-dimensional

Euclidean space, and he has shown that these properties

can be described by concepts that refer only to the surface

itself and not to its relation to the space in which it is

imbedded. Since, in general, there exists no preferred

coordinate system on a surface, this investigation led for

the first time to expressing the relevant quantities in general

coordinates. Riemann has extended this two-dimensional

theory of surfaces to spaces of an arbitrary number of

dimensions (spaces with Riemannian metric, which is

characterized by a symmetric tensor field of second rank).

In this admirable investigation he found the general

expression for the curvature in higher-dimensional metric

spaces.

The development just sketched of the mathematical

theories essential for the setting up of general relativity

had the result that at first Riemannian metric was considered

the fundamental concept on which the general theory of

relativity and thus the avoidance of the inertial system

were based. Later, however, Levi-Civita rightly pointed

out that the element of the theory that makes it possible to

avoid the inertial system is rather the infinitesimal displace-

ment field T\k . The metric or the symmetric tensor field

gik which defines it is only indirectly connected with the

avoidance of the inertial system in so far as it determines a

displacement field. The following consideration will make

this clear.

The transition from one inertial system to another is

determined by a linear transformation (of a particular kind).

[
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If at two arbitrarily distant points and P2 there are two

vectors A 1 and A' respectively whose corresponding com-
1 2

ponents are equal to each other (A1 = A 1

), this relation is

1 2

conserved in a permissible transformation. If in the

transformation formula

dx{
'

the coefficients yj are independent of the x
a

,
the transforma-

tion formula for the vector components is independent of

position. Equality of the components of two vectors at

different points P
x
and P2 is thus an invariant relation if

we restrict ourselves to inertial systems. If, however, one

abandons the concept of the inertial system and thus

admits arbitrary continuous transformations of the co-

ordinates so that the yj depend on the x
a

,
the equality of

the components of two vectors attached to two different

points in space loses its invariant meaning and thus vectors

at different points can no longer be directly compared.

It is due to this fact that in a general relativistic theory one

can no longer form new tensors from a given tensor by

simple differentiation and that in such a theory there are

altogether much fewer invariant formations. This paucity

is remedied by the introduction of the infinitesimal dis-

placement field. It replaces the inertial system inasmuch

as it makes it possible to compare vectors at infinitesimally

close points. Starting from this concept we shall present

in the sequel the relativistic field theory, carefully dispensing

with anything that is not necessary to our purpose.
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The infinitesimal displacement field T

To a contravariant vector A 1
at a point P (coordinates x*)

we correlate a vector A1

-f- 6

A

%
at the infinitesimally close

point (x* + dsd) by the bilinear expression

6A' = -I*, A’ dxd (2)

where the T are functions of x. On the other hand, if A
is a vector field, the components of

(
A*) at the point

(x* + did) are equal to A 1 + dA l where*

dAl = A\i dxd.

The difference of these two vectors at the neighboring point

x* A dxd is then itself a vector

(A\
t + A* I*) dx‘ S A\ dxd

connecting the components of the vector field at two infini-

tesimally close points. The displacement field replaces the

inertial system inasmuch as it effects this connection formerly

furnished by the inertial system. The expression within

the parenthesis, A\ for short, is a tensor.

The tensor character of A\ determines the transformation

law for the F. We have first

3x‘* dxk

dxl

dxk
' Ai

k •

Using the same index in both coordinate systems is not

meant to imply that it refers to corresponding components,

i.e. i in x and in x* run independently from 1 to 4. After

d
*As before “

t

” denotes ordinary differentiation r— .

ax1
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some practice this notation makes the equations con-

siderably more transparent. We now replace

by A<*
t. + A 6

'

Ii*

A\ by A\k + A* rik

and again A** by
d dxk d

dxk ' dxk" dxk
'

This leads to an equation which, apart from the F*, contains

only field quantities of the original system and their deriva-

tives with respect to the x of the original system. Solving

this equation for the T* one obtains the desired transformation

formula

p * = &C ^ dx* (Y
kl

dxi dxk' dx1
’ kl

dx
s
dx‘ dxr dx1

’ 1 J

whose second term (on the right-hand side) can be somewhat
simplified

:

d
2x** dxs dx1

dxsdxt dxk' dx1
'

a (dS)> dx* d IdxY
'

• dx 1
'

_l_
d
2
x‘

dx1
'

\ dx’)
1

dxk
'

dx1
'

\ dxk'i
T

dx*
dxk'dx1

'

dY d2xs

dx* dxk'dx
1
'

We call such a quantity a pseudo tensor. Under linear

transformations it transforms as a tensor, whereas for non-

linear transformations a term is added which does not

contain the expression to be transformed, but only depends

on the transformation coefficients.
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Remarks on the displacement field.

1. The quantity fy (= rjt )
which is obtained by a trans-

position of the lower indices also transforms according to (3)

and is therefore likewise a displacement field.

2. By symmetrizing or anti-symmetrizing equation (3)

with respect to the lower indices k*, l* one obtains the

two equations

dx** dxk dxl
d
2x1’ dxs dxl

dx1n,* (= kHi' n/))=
dxk ’ dx1’ - dxsdx

l

dxk' dx
1
’

Hi* (= mi* rL*)) =
dx1

a? dxk ’ dx1
’

-

Hence the two (symmetric and anti-symmetric) constituents

of rj., transform independently of each other, i.e. without

mixing. Thus they appear from the point of view of the

transformation law as independent quantities. The second

of the equations shows that Tl

kl
transforms as a tensor.

From the point of view of the transformation group it

seems therefore at first unnatural to combine these two

constituents additively into one single quantity.

3.

On the other hand, the lower indices of F play quite

different roles in the defining equation (2) so that there is

no compelling reason to restrict the F by the condition of

symmetry with regard to the lower indices. If one does so

nevertheless, one is led to the theory of the pure gravitational

field. If, however, one does not subject the T to a restrictive

symmetry condition, one arrives at that generalization of the

law of gravitation that appears to me as the natural one.

The curvature tensor

Although the T-field does not itself have tensor character,

it implies the existence of a tensor. The latter is most
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easily obtained by displacing a vector Ai according to (2)
along the circumference of an infinitesimal two-dimensional
surface element and computing its change in one circuit.

This change has vector character.

Let x‘ be the coordinates of a fixed point and x* those of
o

another point on the circumference. Then f
1

1

= — ** is

o

small for all points of the circumference and can be used as

a basis for the definition of orders of magnitude.

The integral j>dA l
to be computed is then in more explicit

notation

— j>
A* dxl

or — j> PL A" d£.

Underlining of the quantities in the integrand indicates

that they are to be taken for successive points of the cir-

cumference (and not for the initial point, £ =0).
We first compute in the lowest approximation the value

of A}_ for an arbitrary point £ of the circumference. This

lowest approximation is obtained by replacing in the

integral, extended now oyer an open path, r*
(
and A s by

the values T®, and A" for the initial point of integration

(£ = 0). The integration gives then

A^=A i -rit
A‘jd£=Ai ~ri

st A‘£.

What is neglected here, are terms of second or higher

order in £ With the same approximation one obtains

immediately

r[« = r*
( + r;,

r r.
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Inserting these expressions in the integral above one obtains

first, with an appropriate choice of the summation indices.

i ri, + r*
( ,? s') (A* - rpq A’S*) d?

where all quantities, with the exception of f, have to be

taken for the initial point of integration. We then find

- r;
t
a>

j,
d? - r*,

f
a*

j
s' d? + r*

(
rpq a

*

^
s' d

?

where the integrals are extended over the closed circum-

ference. (The first term vanishes because its integral

vanishes.) The term proportional to (f)
2

is omitted since

it is of higher order. The two other terms may be combined

into

f
~

^"pl,q + P*( n ? dS‘.

This is the change AA’ of the vector A 1
after displacement

along the circumference. We have

<J>

S' d? =
<J>

d{S'S
l

) - j> ? dtq = - j> dSq .

This integral is thus antisymmetric in t and q, and in addition

it has tensor character. We denote it by /1?. Iff‘
q were

an arbitrary tensor, then the vector character of AA 1 would

imply the tensor character of the bracketed expression in

the last but one formula. As it is, we can only infer the

tensor character of the bracketed expression if antisym-

metrized with respect to t and q. This is the curvature

tensor

R\lm = I/,m — ~ P*f + PIm P|/- (4)

The position of all indices is hereby fixed. Contracting
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with respect to i and m one obtains the contracted curvature

tensor

Ruc
= !«.. - rj»

lt
- rj r*sk r* r'1 ik 1

st (4a)

The A-transformation

The curvature has a property which will be important
in the sequel. For a displacement field T we may define a
new T* according to the formula

Hi* = rjt + b\X k (5)

where A is an arbitrary function of the coordinates, and b\

is the Kronecker tensor (“A-transformation”). If one forms

R'kim (T*) by replacing T* by the right-hand side of (5),

A cancels so that

Ri
k,m (r*) = R\lm (r)

Rik (r*) = Rik (r)
(
6

)

The curvature is invariant under A-transformations (“A-

invariance”). Consequently, a theory which contains T
only within the curvature tensor cannot determine the

F-field completely but only up to a function A, which
remains arbitrary. In such a theory, T and T* are to be
regarded as representations of the same field, in the same
way as if T* were obtained from T merely by a coordinate
transformation.

It is noteworthy that the A-transformation, contrary to a
coordinate transformation, produces a non-symmetric T*
from a T that is symmetric in i and k. The symmetry
condition for T loses in such a theory its objective significance.

The main significance of A-invariance lies in the fact that

it has an influence on the “strength” of the system of the
field equations, as we shall see later.
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The requirement of “transposition invariance
”

The introduction of non-symmetric fields meets with the

following difficulty. If is a displacement field, so is

(= I«). If gik is a tensor, so is gik (= gti ). This leads

to a large number of covariant formations among which it

is not possible to make a selection on the principle of rela-

tivity alone. We shall demonstrate this difficulty by an

example and we shall show how it can be overcome in a

natural manner.

In the theory of the symmetric field the tensor

( ^^ikl ~ ) gik,l gsk gin 1 '
Ik

plays an important part. If it is put equal to zero, one

obtains an equation which permits to express the T by the g,

i.e. to eliminate the T. Starting from the facts that (1)

A\ = A\
t -f AT* (

is a tensor, as proved earlier, and that

(2) an arbitrary contravariant tensor can be expressed in

the form 'fA
lBk

,
it can be proved without difficulty that

t (0 (0

the above expression has tensor character also if the fields g
and r are no longer symmetric.

But in the latter case, the tensor character is not lost if,

e.g., in the last term r*t is transposed, i.e. replaced by r*A.

(this follows from the fact that gis (
Fs

kl — T\k )
is a tensor).

There are other formations, though not quite so simple,

that conserve the tensor character and can be regarded as

extensions of the above expression to the case of the non-

symmetric field. Consequently, if one wants to extend to

non-symmetric fields the relation between the g and the T
obtained by setting the above expression equal to zero,

this seems to involve an arbitrary choice.

But the above formation has a property that distinguishes

it from the other possible formations. If one replaces in

[
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it simultaneously gik by gik and Y[k by f * and then inter-

changes the indices i and k it is transformed into itself:

it is “transposition symmetric” with respect to the indices

i and k. The equation obtained by putting this expression

equal to zero is “transposition invariant.” If g and Y are

symmetric, this condition is, of course, also satisfied; it is

a generalization of the condition that the field quantities

be symmetric.

We postulate for the field equations of the non-symmetric

field that they be transposition invariant. I think that this

postulate, physically speaking, corresponds to the require-

ment that positive and negative electricity enter symmetri-

cally into the laws of physics.

A glance at (4a) shows that the tensor Rik is not completely

transposition symmetric, since it transforms by transposition

into

=) rjt.* - ru.t - n ru + Y’ik n, . (4*)

This circumstance is the basis of the difficulties that one

encounters in the endeavour to establish transposition

invariant field equations.

The pseudo tensor U\k

It turns out that a transposition symmetric tensor can

be formed from Rik by the introduction of a somewhat

different pseudo tensor U\k instead of Y\k . In (4a) the two

terms that are linear in Y can be formally combined to a

single one. One replaces rjt>, - Y8

isk by (Y‘ik - d‘k ) t,

and defines a new pseudo tensor U\k by the equation

t4 = r!*-ru. (7)

Since

U‘u = -3 T%
,

[
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as follows from (7) by contraction with respect to k and l, we
obtain the following expression for T in terms of U

:

H* = U\k -\ U\t
S‘ . (7a)

Inserting these in (4a) one finds

sik = U‘ik, - U\
t
U\k + i U\s U\k (8)

for the contracted curvature tensor in terms of U. This

expression, however, is transposition symmetric. It is this

fact that makes the pseudo tensor U so valuable for the

theory of non-symmetric fields.

A-transformation for U. If in (5) the Y are replaced by the

U, one obtains by a simple calculation

U l

a* =Ul

ik + (d\X k -dl

k k i). (9)

This equation defines the A-transformation for the U. (8) is

invariant with respect to this transformation
(
Sik(U*) =

S*(U)).

The transformation law for U. If in (3) and (3a) the T are

replaced by the U with the help of (7a), one obtains

Ui *
ik

dx1' dxl dxk n dx1’
d‘
zx8

, dx1 ’ d~x
s

a? df' fa?
ik +

fa* Wfa?
~ k

'

a? df'dx
1
'

(
10

)

Note that again the indices referring to both systems assume

all the values from 1 to 4 independently of each other, even

though the same letter is being used. Regarding this

formula it is noteworthy that on account of the last term it

is not transposition symmetric with respect to the indices i

and k. This peculiar circumstance can be clarified by

demonstrating that this transformation may be regarded

as a composition of a transposition symmetric coordinate
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transformation and a ^-transformation. In order to see

that we write first the last term in the form

_ i |> — d
2
*

8

_l_
x*

1
2

1 * dx8
dxl

'dx
1
'

' dx8 dxk'dxl’\

+ 4 k—
L dx8

d2xs dx1
'

dxk'dxt
‘ k

dx8
dx'

d
2x8

]

«*vJ'

The first of these two terms is transposition symmetric. Let

us combine it with the first two terms of the right-hand side

of (10) to an expression K\k
*. Let us now consider what

we get if the transformation

U\k
* = K\k

*

is followed by the ^-transformation

U[lc** = U\lc* + A-.lc
• —

The composition yields

U[lc** = K\k* + ($•
"

A,k‘
— ^1* A,i’)

This implies that (10) may be regarded as such a composition

provided the second term of (10a) can be brought into the

form A — d‘k > A For this it is sufficient to show that a

A exists such that

dx1' d
2x8

¥
a? a?a?

= (11)

dx1' d
2x8

/ .Jr1
d
2x8

,
\

I and 9
— —^ = A .* |

.

\ 9** ax*
•*

/

In order to transform the left-hand side of the so far hypo-

dx1
'

thetical equation we must first express by the coefficients

dxa
°x

of the inverse transformation, -z-n . On the one hand,
’ dx»'

'

dxp dx1
'

dJ dx8
= <5f. (a)
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On the other,

w _ dx*

dx1
' ''

dxf

dD = Ddf.

dx
1y

dxg

Here, F®« denotes the co-factor of
,
and may in turn be

d*
.

expressed as the derivative of the determinant D =
dxs

with respect to —

.

Therefore, we have also
dx1

dxp d log D
dx1

'
’

. / dx
s
\

d
la?)

It follows from (a) and (b) that

dx1' d log D
~dx

8
=

df. (b)

(a?)'

Because of this relation the left-hand side of (11) can be

written as

£
d log D / dx'

(S)
£), - *

d log D

This implies that (11) is indeed satisfied by

A = | log D.

This proves that the transformation (10) can be regarded as

a composition of the transposition symmetric transformation

rrl * dx1' dx1 dx* dx
1' d-x

g

ik ~
dx1 dxl' dxk

' ik +
dx

s
dxi

'dx
k’

_ i
f dx? 3V
dp ~

dx8 dx1 dx 1

dx
l'

d
2
x
s

dx8
dxk'dx 1

'

J

(10b)
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and a A-transformation. (10b) may thus be taken in place

of (10) as transformation formula for the U. Any trans-

formation of the £/-field that only changes the form of the

representation can be expressed as a composition of a

coordinate transformation according to (10b) and a
A-transformation.

Variational principle and field equations

The derivation of the field equations from a variational

principle has the advantage that the compatibility of the

resulting system of equations is assured and that the identities

connected with the general covariance, the “Bianchi
identities,” as well as the conservation laws result in a
systematic manner.

The integral to be varied requires as integrand § a
scalar density. We shall construct such a density from Rik

or Sik- The simplest procedure is to introduce a covariant
tensor density g

a of weight 1 in addition to T or U
respectively, setting

Z = Q
ik Rik (= Q

ik Sik ).

The transformation law for the g‘* must be

(
12

)

0
if dxl* dxk'

ik
dx1

dx1
dxk ^ dx1

' (13)

where again the indices referring to different coordinate

systems, in spite of the use of the same letters, are to be
treated as independent of each other. We obtain indeed

f g. *. -f
d-£ df 8

» dx
1

dx * dx1

dxr
'

J J dx1 dxk
9

dx1
'

'

dx'" dx
k' Ssl

dxr

= J
$ </t,

[ 154
]



APPENDIX II

i.e. the integral is transformation invariant. Furthermore,

the integral is invariant with respect to a A-transformation

(5) or (9) because Rik as expressed by the T or U respectively,

and hence also §, is invariant with respect to a A-trans-

formation. From this it follows that also the field equations

to be derived by variation of I ftdr are covariant with

respect to coordinate and to A-transformations.

But we also postulate that the field equations are to be

transposition invariant with respect to the two fields g, T
or the fields g, U. This is assured if § is transposition

invariant. We have seen that Rik is transposition symmetric

if expressed in the U, but not if expressed in the T. Hence

5 is only transposition invariant if we introduce in addition

to the g
l* the U (but not the T) as field variables. In that

case, we are sure from the beginning that the field equations

derived from
J
§ dr by variation of the field variables are

transposition invariant.

By variation of § (equations (12) and (8)) with respect

to the g and U we find

<5$ = Sa dQ
ik - 6U\k + (g

a dUUb

where Sik = - U\, U\k + \ U\K U\k ,

= s
ik

,i + g
8
* m, - \ u*d df)

+ g'* (Ui - 1 £/{, df).

The field equations

Our variational principle is

(
15

)
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The g* and U\k are to be varied independently, their

variations vanishing at the boundary of the domain of

integration. This variation gives first of all

J
<5S dr = 0.

If the expression given in (14) is inserted here, the last

term of the expression for dSj does not give any contribution

since dU\k vanishes at the boundary. Hence we obtain

the field equations

Sik = 0 (16a)

9t“, = 0. (16b)

They are—as is already evident from the choice of the

variational principle—invariant with respect to coordinate

and to ^-transformations and also transposition invariant.

Identities

These field equations are not independent of each other.

Between them exist 4 + 1 identities. That is, there exist

4 -j- 1 equations between their left-hand sides that hold

regardless of whether or not the q-U field satisfies the field

equations.

These identities can be derived by a well-known method

from the fact that j" § dr is invariant with respect to coordinate

and to A-transformations.

For it follows from the invariance of
J

<5 dr that its variation

vanishes identically if one inserts in 69) the variations <5g

and dU which arise from an infinitesimal coordinate trans-

formation or an infinitesimal A-transformation respectively.
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An infinitesimal coordinate transformation is described by

x'-x'+f (17)

where £* is an arbitrary infinitesimal vector. We must

now express the <3g
li and dUl

ik by the £
l using the equations

(13) and (10b). Because of (17) one must replace

and omit all terms that are of higher than first order in |.

Thus one obtains

dg
a(= Q

ik ' - g“) = 9
sk
e, + 9

is - Q
lk

£*.. + [-9% ^
(13a)

6U\k (= u\k
* - U[k )

= u\k I', - C7' t - £7{. ?.* +

+ [- £/'*. £*]• (
10c

)

Note here the following. The transformation formulas

furnish the new values of the field variables for the same point

of the continuum. The calculation indicated above first

gives expressions for 6q
iIc and hU\k without the terms in

brackets. In the calculus of variation, on the other hand,

dg
ik and <5 U\k denote the variations for fixed values oj the

coordinates. In order to obtain these the terms in brackets

have to be added.

If one inserts in (14) these “transformation variations”

<^9 and dU, the variation of the § dr vanishes

identically. If furthermore the ? are so chosen that they

vanish together with their first derivatives at the boundary

of the domain of integration, the last term in (14) gives no

contribution. The integral

f
(Sik hgik - 91“, 6U\k )

dr

[
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vanishes therefore identically if the dQ
ik and dU\k are

replaced by the expressions (13a) and (10c). Since this

integral depends linearly and homogeneously on the f
4 and

their derivatives, it can be brought into the form

by repeated integration by parts, where 28* is a known
expression (of first order in Sik and of second order in 91*).
From this follow the identities

2B
t

. = 0. (18)

These are four identities for the left-hand sides Sik and
9P* of the field equations, which correspond to the Bianchi
identities. According to the terminology introduced before
these identities are of third order.

There exists a fifth identity corresponding to the invariance

of the integral
J
§ c

I

t with respect to infinitesimal ^-trans-

formations. Here we have to insert in (14)

*B
a = 0 bU\k = b\l k - h

l

k A,

where X is infinitesimal and vanishes at the boundary of the
domain of integration. One obtains first

or, after integration by parts,

(where, generally, 9P*, = \ (91*, — JR**',)).
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This furnishes the desired identity

(
19

)

In our terminology this is an identity of second order. For

we obtain from (14) by straightforward computation

9t{ff = gS,. (19a)

If the field equation (16b) is satisfied, we have thus

gt\, = 0. (16c)

Remark on the physical interpretation. A comparison with

Maxwell’s theory of the electromagnetic field suggests the

interpretation that (16c) expresses the vanishing of the

magnetic current density. If this is accepted, it is evident

which expression should denote the electric current density.

One can assign a tensor g
ik

to the tensor density Q
lk by

setting

9** = §
ik

'V
/- \Sst\ (

20
)

where the covariant tensor gik is correlated to the contra-

variant one by the equations

&*?=#< (
21

)

From these two equations we obtain

g
ik = 9* (-|9l)“*

and then gik
from equations (21). We may then assume

that

(oiki) = gaJ + gki,i + gn,k (
22

)
V V V

or

a” = i rf
klm

aikl
(22a)

expresses the current density, where rf
klm

is Levi-Civita’s

tensor density (with components ±1) antisymmetric in

all indices. The divergence of this quantity vanishes

identically.
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The strength of the system of equations (16a), ( 16i)

In applying here the method of enumeration described

above one must take into account the fact that all the U*
obtained from a given U by ^-transformations of the form

(9) actually represent the same £/-field. This has the

consequence that the ath order coefficients of the U\k-

expansion incorporate ath order derivatives of A whose

choice is of no consequence for the distinction of actually

differing Z7-fields. Thus the number of expansion coeffi-

cients relevant for the enumeration of the 17-fields is

decreased by By the enumeration method we obtain

for the number of free ath order coefficients

Z = 16
[' + 64 - 4

16
4

a - 2

+
>(.

U.)

)
+64

(»

)
+

(»

4

- 1

4

- 2
(23)

The first bracket represents the total number of relevant

ath order coefficients which characterize the g-f/-field, the

second the reduction of this number due to the existence of

the field equations, and the third bracket gives the correction

to this reduction on account of the identities (18) and (19).

Computing the asymptotic value for large a we find

£i

a
(23a)

where

Zi = 42.
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The field equations of the non-symmetric field are thus

considerably weaker than those of the pure gravitational

field
( Zl = 12).

The influence of X-invariance on the strength of the system of

equations. One may be tempted to bring about trans-

position invariance of the theory by starting from the

transposition invariant expression

$ = ¥ss
lk R,k + Rf

(instead of introducing the U as field variables). Of course,

the resulting theory will be different from the one expounded

above. It can be shown that for this § no A-invariance

exists. Here, too, we obtain field equations of the type

(16a), (16b), which are transposition invariant (with

respect to g and T). Between them, there exist, however,

only the four “Bianchi identities.” If one applies the

method of enumeration to this system, then, in the formula

corresponding to (23), the fourth term in the first bracket

and the second term in the third bracket are missing. One

obtains

Z\ = 48.

The system of equations is thus weaker than the one chosen

by us and is therefore to be rejected.

Comparison with the previous system offield equations. This is

given by

=0 R« =0

gikj — gsk Hz — gu r«- = 0 Ra.i + Rki.i + Ru.k = 0

where Rik is defined by (4a) as a function of the T (and

where Rik = \{Rik + Ruh Rik = l {Rik — Rh))-

This system is entirely equivalent to the new system

[
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(16a), (16b) since it has been derived from the same integral

by variation. It is transposition invariant with respect to

the gile and The difference, however, lies in the
following. The integral to be varied is itself not trans-

position invariant, nor is the system of equations that is at

first obtained by its variation; it is, however, invariant

with respect to the A-transformations (5). In order to

obtain transposition invariance here, one has to use an
artifice. One formally introduces four new field variables,

which after variation are so chosen that the equations
P,** = 0 are satisfied.* Thus the equations obtained by
variation with respect to the T are brought into the indicated

transposition invariant form. But the ^-equations still

contain the auxiliary variables One can, however,
eliminate them, which leads to a decomposition of these

equations in the manner stated above. The equations

obtained are then also transposition invariant (with respect

to the g and T).

Postulating the equations F 8

is = 0 involves a normalization

of the I'-field, which removes the A-invariance of the system
of equations. As a result, not all equivalent representations

of a T-field appear as solutions of this system. What takes

place here, is comparable to the procedure of adjoining to

the field equations of pure gravitation arbitrary additional

equations which restrict the choice of coordinates. In our
case, moreover, the system of equations becomes un-
necessarily complicated. These difficulties are avoided in

the new representation by starting from a variational

principle that is transposition invariant with respect to the

g and U, and by using throughout the g and U as field

variables.

* By setting IV = T'* + (5J A* .
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The divergence law and the conservation law of momentum

and energy

If the field equations are satisfied and if, moreover, the

variation is a transformation variation, then, in (14), not

only Sik and 9P* vanish, but also <5§, so that the field

equations imply the equations

(9
^ 6U'a),

= 0

where dU\k is given by (10c). This divergence law holds

for any choice of the vector The simplest special choice,

i.e. I* independent of the x, leads to the four equations

ss (g* VUjth = °-

These can be interpreted and applied as the equations of

conservation of momentum and energy. It should be noted

that such conservation equations are never uniquely

determined by the system of field equations. It is interesting

that according to the equations

i; = a* iw

the density of the energy current (I4 ,
Z\) as well as

the energy density T* vanish for a field that is independent

of xx
. From this one can conclude that according to this

theory a stationary field free from singularities can never

represent a mass different from zero.

The derivation as well as the form of the conservation

laws become much more complicated if the former

formulation of the field equations is used.

GENERAL REMARKS

A. In my opinion the theory presented here is the

logically simplest relativistic field theory which is at all

[
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possible. But this does not mean that nature might not

obey a more complex field theory.

More complex field theories have frequently been pro-

posed. They may be classified according to the following

characteristic features

:

(a) Increase of the number of dimensions of the con-

tinuum. In this case one must explain why the con-

tinuum is apparently restricted to four dimensions.

(b) Introduction of fields of a different kind (e.g. a

vector field) in addition to the displacement field and its

correlated tensor field gik (or q
iIc

) .

(c) Introduction of field equations of higher order (of

differentiation).

In my view, such more complicated systems and their

combinations should be considered only if there exist

physical-empirical reasons to do so.

B. A field theory is not yet completely determined by the

system of field equations. Should one admit the appearance

of singularities? Should one postulate boundary con-

ditions? As to the first question, it is my opinion that

singularities must be excluded. It does not seem reasonable

to me to introduce into a continuum theory points (or

lines etc.) for which the field equations do not hold. More-
over, the introduction of singularities is equivalent to

postulating boundary conditions (which are arbitrary from

the point of view of the field equations) on “surfaces” which
closely surround the singularities. Without such a postulate

the theory is much too vague. In my opinion the answer

to the second question is that the postulation of boundary
conditions is indispensable. I shall demonstrate this by
an elementary example. One can compare the postulation

[
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of a potential of the form
<f> 2 — with the statement that

r

outside the mass points (in three dimensions) the equation

A</> = 0 is satisfied. But if one does not add the boundary

condition that </> vanish (or remain finite) at infinity, then

there exist solutions that are entire functions of the x (e.g.

*1
—

h(x2
2 + *3

2

)) and become infinite at infinity. Such

fields can only be excluded by postulating a boundary

condition in case the space is an “open” one.

C. Is it conceivable that a field theory permits one to

understand the atomistic and quantum structure of reality ?

Almost everybody will answer this question with “no.”

But I believe that at the present time nobody knows any-

thing reliable about it. This is so because we cannot

judge in what manner and how strongly the exclusion of

singularities reduces the manifold of solutions. We do not

possess any method at all to derive systematically solutions

that are free of singularities. Approximation methods are

of no avail since one never knows whether or not there

exists to a particular approximate solution an exact solution

free of singularities. For this reason we cannot at present

compare the content of a nonlinear field theory with

experience. Only a significant progress in the mathematical

methods can help here. At the present time the opinion

prevails that a field theory must first, by “quantization,”

be transformed into a statistical theory of field probabilities

according to more or less established rules. I see in this

method only an attempt to describe relationships of an

essentially nonlinear character by linear methods.

D. One can give good reasons why reality cannot at all

be represented by a continuous field. From the quantum

phenomena it appears to follow with certainty that a finite
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system of finite energy can be completely described by a
finite set of numbers (quantum numbers). This does not
seem to be in accordance with a continuum theory, and
must lead to an attempt to find a purely algebraic theory

for the description of reality. But nobody knows how to

obtain the basis of such a theory.
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